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Abstract 
In the present work, our goal is to establish a study of some families of quadratic polynomial vector 

fields connected to orthogonal polynomials that relate, via two different points of view, the qualitative 

and the algebraic ones. We extend those results that contain some details related to differential Galois 

theory as well as the inclusion of Darboux theory of integrability and the qualitative theory of dynamical 

systems. We conclude this study with the construction of differential Galois groups, the calculation of 

Darboux first integral, and the construction of the global phase portraits. 

 

Keywords: Darboux First Integral, Differential Galois Theory, Integrability, Orthogonal Polynomial, 

Polynomials Vector Fields 

 

 

 

摘要 在当前的工作中，我们的目标是建立与正交多项式相关的二次多项式矢量场的一些族的研究

，该正交多项式通过两种不同的观点相互关联，即定性和代数。 我们扩展了这些结果，这些结果

包含与微分加洛瓦理论有关的一些细节，以及包含达布可积性理论和动力学系统的定性理论。我

mailto:jrodri@uninorte.edu.co
mailto:jorgelrodriguezc@mail.uniatlantico.edu.co
mailto:areyeslinero@mail.uniatlantico.edu.co
mailto:mcampodonado@mail.uniatlantico.edu.co
mailto:primitivo.acosta-humanez@isfodosu.edu.do
http://creativecommons.org/licenses/by/4.0


               Contreras et al. / Journal of Southwest Jiaotong University / Vol.55 No.4 Aug. 2020 2 

们以差分伽罗瓦群的构造，达布克斯第一积分的计算以及整体相像的构造来结束本研究。 

关键词: 达布第一积分，微分伽罗瓦理论，可积性，正交多项式，多项式矢量场 

I. INTRODUCTION 
This paper is a follow-up to [1] and a slight 

improvement over [2]. To study any process of 

variation with respect to time, the theory of 

dynamical systems has been developed, which is 

also endowed with algebraic and qualitative 

techniques, among others. Although, in a general 

case, it is not possible to find the solution of a 

differential equation that models a specific 

process, we can identify geometric structures 

having influence over qualitative properties such 

as stability and invariant sets attractors, among 

others, see [3], [4], [5], [6], [7], [8], [9], [10] for 

further details. In the algebraic sense, E. Picard 

and E. Vessiot introduced an approach to study 

linear differential equations based on the Galois 

theory for polynomials [3], which is known as 

differential Galois theory or Picard-Vessiot 

theory [11], [12], [13], [14] for further details. 

Also, G. Darboux introduced an algebraic theory 

to analyze the integrability of polynomial vector 

fields, which is known as Darboux theory of 

integrability [15]. The final ingredient of this 

paper corresponds to orthogonal polynomials 

[16], [17], which are very important in both 

theoretical and applied mathematics: they 

contribute to random matrices, approximation 

theory, trigonometric series, and especially 

differential equations, among others. 

Concerning applications of differential Galois 

theory to dynamical systems, [18], [19] presented 

techniques to determine the non-integrability of 

Hamiltonian systems, which can be found in [1], 

[18], [19], [20], [21], [22], while [1], [20] 

presented techniques to study planar polynomial 

vector fields. In the same way, applications to 

Quantum Mechanics can be found in [21], [22]. 

Combinations of algebraic and qualitative 

techniques to study planar vector fields were 

presented in [22], [23]. This paper is a sequel of 

[1], and in particular is an extension of section 

§4.2. We follow the same structure of papers 

[22], [23] concerning the algebraic and 

qualitative techniques to study the polynomial 

vector fields. We remind the reader that for 

algebraic analysis, differential Galois theory, and 

Darboux integrability, we consider vector fields 

over the complex numbers, while for qualitative 

analysis we consider the vector fields over the 

real numbers. 

 

II. PRELIMINARIES 
In this section we present the basic theoretical 

background needed to understand the rest of the 

paper. 

 

A. Classical Orthogonal Polynomials 

The main objects of study in this work are 

quadratic polynomial differential systems 

associated to classical orthogonal polynomials. In 

particular we focus on the sequences of classical 

orthogonal polynomials of the hypergeometric 

type—that is, orthogonal polynomials satisfying 

the differential equation 

ρ(x)y
’’
+ τ(x)y

’
+ λy = 0,                               (1.1) 

where ρ(x), τ(x) are polynomials and λ depending 

on n is given in the next table: 

 
Table 1. 

Polynomial list 

ρ(x) τ(x) λn 

1 − x2 β − α − (α + β + 2)x n(n + 1 + α + β) 

1 − x2 −2x n(n + 1) 

1 − x2 −x n2 

1 − x2 −3x n(n + 2) 

1 − x2 −(2α + 1)x n(n + 1 + 2α) 

x α + 1 − x n 

x 1 − x n 

1 −2x 2n 

 

Moreover, it is well known that classical 

orthogonal polynomials can be obtained by 

Rodrigues formula [16], [17]. In a general form, 

the constant λn can be obtained as follows: 

. 

Thus, the object of study becomes the 

differential system 

 

and its associated foliation becomes 

. 

We claim that  because we are studying 

quadratic polynomial vector fields. 

 

B. Critical Points 
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We recall that a real vector field χ is a 

function of C
r 
class where r ∈ N ∪ ∞, ω (if r = ω 

we say that the function is analytic). Moreover, χ: 

∆→ R and ∆ is an open subset of . For instance, 

the differential system associated to the vector 

field χ is given by . Now, based on 

[3], [7], we present the classification of some 

critical points used in the main results of this 

paper. The following theorem is concerning 

hyperbolic critical points. 

Theorem 1.1: Let (0,0) be an isolated singular 

point of the vector field X associated to 

                      (1.2) 

 

where A and B are analytic in a neighborhood of 

the origin with A(0,0) = B(0,0) = DA(0,0) = 

DB(0,0) = 0. Let λ1 and λ2 be an eigenvalue of the 

linear part DX(0,0) of the system at the origin. 

Then the following statements hold: 

If λ1 and λ2 are real and λ1λ2 < 0, then (0,0) is a 

saddle. If we denote by E1 and E2 the eigenspaces 

of respectively λ1 and λ2, then one can find two 

invariant analytic curves, tangent respectively to 

E1 and E2 at 0. On one of the points of E1 the 

analytic curves are attracted towards the origin, 

while on one of the points of E2 the curves are 

repelled away from the origin. On these invariant 

curves X is C
ω
−linearizable. There exists a C

∞ 

coordinate change transforming (1.2) into one of 

the following normal forms: 

 

 

in the case λ1 / λ2 ∈ R \ Q, and 

 

 

in the case λ1 / λ2 = −k / l ∈ Q with k,l ∈  and 

where f,g are function C
∞
. All systems 1.2 are C

0
-

conjugate to 

 

 

If λ1 and λ2 are real with |λ2| ≥ |λ1| and λ1λ2 > 0, 

then (0,0) is a node. If λ1 > 0 (respectively < 0), 

then it is repelling or unstable (respectively 

attracting or stable). There exists a C
∞ 

coordinate 

change transforming (1.2) into 

x˙ = λ1x, 

y˙ = λ2y, 

in case λ1 / λ2 6 ∈ N, and into 

 

 

for some η = 0 or 1, in case λ2 = mλ1 with m ∈ N 

and m > 1. All systems are C
0
−conjugate to  

 

 

with η = ±1 and λ1η > 0. 

If λ1 = α + βi and λ2 = α − βi with  

then (0,0) is a ―strong‖ focus. If α> 0 

(respectively α< 0), it is repelling or unstable 

(respectively attracting or stable). There exists a 

C
∞ 

coordinate change transforming (1.2) into 

 

 

All systems (1.3) are C
0
−conjugado to 

 

 

with η = ±1 and αη> 0. 

If λ1 = βi and λ2 = −βi with , then (0,0) 

is a linear center topologically, a weak focus or a 

center. 

The following theorem corresponds to Semi-

hyperbolic critical points. 

Theorem 1.2: Let (0,0) be an isolated singular 

point of the vector field X given by 

                                               (1.3) 

 

where A and B are analytic in a neighborhood of 

a origin with A(0,0) = B(0,0) = DA(0,0) = 

DB(0,0) = 0 and λ > 0. Let y = f(x) be the 

solution of equation λy + B(x,y) = 0 in a 

neighborhood of the point (0,0), and suppose that 

the function g(x) = A(x,f(x)) has the expression 

g(x) = amx
m 

+ o(x
m
), where m ≥ 2 and . 

Then, there always exists an invariant analytic 

curve, called the strong unstable manifold, 

tangent at 0 to the 0 to the y−axis, on which X is 

analytically conjugate to 

 

It represents repelling behavior since λ > 0. 

Moreover, the following statements hold. 

(i) If m id odd and am < 0 then (0,0) is a 

topologycal saddle. Tangent to the x−axis there is 

a unique invariant C
∞ 

curve, called the center 

manifold, on which X is C
∞
-conjugate to 

 

for some a ∈ R. 
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If this invariant curve is analytic, then on it X 

is C
∞
-conjugate to 

 

and is C
0
-conjugate to 

 

(i) if m is odd and am > 0, the origin is a 

unstable topological node. Every point not 

belonging to the strong unstable manifold lies on 

an invariant C
∞ 

curve called a center manifold, 

tangent to the x-axis at the origin, and on which 

X is a C
∞
-conjugate to 

 

for some a ∈ R. 

All these center manifolds are mutually 

infinitely tangent to each other, and hence at most 

one of them can be analytic, in which case X is 

C
∞
-conjugate to 

 

 

And is C
0
-conjugate to  

 

 

(ii) If m is even, then (0,0) is a saddle node, 

that is a singular point whose neighborhood is the 

union of one parabolic and two hyperbolic 

sectors. Modulo changing x into −x, we suppose 

that am > 0. Every point to the right of the strong 

unstable manifold (side x > 0) lies on a invariant 

C
∞ 

curve, called a center manifold, tangent to the 

x-axis at the origin, and on which case X is a C
∞
-

conjugate to 

 

for some a ∈ R. All these center manifold 

coincide on the side x ≤ 0 and are hence infinitely 

tangent at the origin. At most one of these center 

manifolds can be analytic, in which case X is C
∞
-

conjugate to 

 

 

and is C
0
-conjugate to  

x˙= x
2
, 

y= λy. 

The following theorem is concerning to 

Nilpotent singular points. 

Theorem 1.3: Let (0,0) be an isolated singular 

point of the vector field X given by 

 

 

where A and B are analytic in a neighborhood of 

the point (0,0) and also j1A(0,0) = j1B(0,0) = 0. 

Let y = f(x) be the solution of the equations 

 in a neighborhood of the point 

(0,0), and consider F(x) = B(x,f(x)) and G(x) = 

(∂A/∂v + ∂B/∂x)(x,f(x)). Then the following 

holds: 

(i) If F(x) ≡ G(x) ≡ 0, then the phase portrait 

of X is given by 1a. 

(ii) Si F(x) ≡ 0 and G(v) = bx
n
+ o(x

n
) with n 

∈ N, n ≥ 1 and b 6= 0, then the phase portrait of 

X is given by 1b o c. 

(iii) If G(v) ≡ 0 and F(x) = ax
m
+o(x

m
) with m 

∈ N, m ≥ 1 and a 6= 0, then: 

If m is odd and a > 0, then the origin is a 

saddle (1d) and if a < 0, then it is a center or 

focus ( 1e − f). 

If m is even the origin of X is a cusp (1h). 

(iv) If  and 

 with m,n ∈ N, m ≥ 1, 

n ≥ 1 and , , then we have: 

If m is even, and m < 2n + 1, then the origin 

of is a cusp 1h,or  m > 2n + 1, then the origin is a 

saddle-node 1i or j  

If m is odd and a > 0 then the origin is a 

saddle 1d. 

If m is odd, a < 0 and Either m < 2n+1, or m = 

2n+1 and b
2 

+4a(n+1) < 0, then the origin is a 

center or focus (figure 1e, g). 

If n is odd and either m > 2n + 1, or m= 2n + 

1 and b
2 
+ 4a(n+1) ≥ 0, then the phase portrait of 

the origin of X consist of one hyperbolic and one 

elliptic as in figure (1k). 

n is even and either m > 2n+1, or m > 2n+1 

and b
2
+4a(n+ 1) ≥ 0 then the origin of X is a 

node as in figure 1l, m. The node is attracting if b 

< 0 and repelling if b > 0. 

 
Figure 1. Portraits of phase for 2.8 [3] 

 

For complete study of these theorems see [3]. 

 

C. Invariants Curves 
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Let be the differential polynomial complex 

system 

                                             
(1.4) 

 

and m = max{degP,degQ}. 

Theorem 1.4: Suppose that a C−polynomial 

system (1.4) of degree m admits p irreducible 

invariant algebraic curves fi = 0 with cofactors Ki 

= 1,2,...,p; q exponential factors exp(gi/hi) with 

cofactors Lj, j = 1,2,...,q, and r independent 

singular points (xk,yk) ∈ C
2 
such that fi(xk,yk)= 0) 

then if there exits λi,µj ∈ C no not all zero such 

that 

 

for some s ∈ C\{0}, then the (multivalued) 

function 

 

is an invariant of system (1.4). 

For a complete version if this theorem see 

[13], §8, pp. 219. 

The following theorems concern to singular 

points at infinity, where  and . 

Theorem 1.5: The critical points at infinity for 

the mth degree polynomial system (1.4) occur at 

the points (X,Y,0) over the equator of the 

Poincarè sphere, being 

X
2 
+ Y 

2 
= 1 and XQm(X,Y ) − Y Pm(X,Y ) = 0. 

Theorem 1.6: The flow defined in a 

neighborhood of any critical point of (1.4) (with 

mentioned change of variable) over the equator 

of the Poincarè sphere S
2
, except the points 

(0,±1,0), is topologically equivalent to the flow 

fined by the system: 

               (1.5) 

being the signs determined by the flow on the 

equator of S
2 
such as was determined in Theorem 

1.5. Similarly, the flow defined by (1.4) (with the 

mentioned change of variable) in a neighborhood 

of any critical point of (1.4) on the equator of S
2 

except the points (±1,0,0) is topologically 

equivalent to the flow defined by the system: 

               (1.6) 

the signs being determined by the flow on the 

equator of S
2 

as determined in the theorem (1.5). 

This theory can be study in detail on [3], [7]. 

 

III. RESULTS AND DISCUSSION 
In this section we demonstrate the main 

results of the paper. We begin by presenting 

some results of orthogonal polynomials theory 

from a Galoisian point of view. The following 

proposition relates the classical Galois theory 

with orthogonal polynomials. 

Proposition 2.1: If Pn is an orthogonal 

polynomial, then for the splitting field of the 

polynomial Pn(x) over R, (R{Pn(x)}); we know 

that R{Pn(x)} = R. 

Proof: As the roots α1,...,αn of any orthogonal 

polynomial Pn of degree n are real and distinct, 

then 

R{Pn} = R[α1,...,αn]. 

Taking the integral domain R[α1]. By 

definition, we know that 

R[α1] = {f(α1)/f(x) ∈R[x]}. 

Thus, f(α1) ∈ R. In this way R[α1,...,αn] = R.  

Remark 2.1: From the previous proposition, we 

can observe that if we take the real members as 

the base field, then the splitting field of any 

orthogonal polynomial is again the real numbers. 

That is, the extension L = R{Pn} = R, and 

therefore the Galois group of the polynomial is 

G(L \ R) = {f : f(x) = x,∀x∈R} = Id. 

The following proposition appears in [5], 

§4.2, and it is included jointly with the proof for 

completeness. 

Proposition 2.2: If we consider two 

polynomials ρ(x), τ(x) and the parameter λn from 

the previous table, then for any µ, the Riccati 

type differential equation 

,                        (2.1) 

can be transformed into the hypergeometric type 

equation (1.1). 

ρ(x)y
‖
+ K1P1y

’
+ λny = 0 

Proof: Making the change of variable w = µv, 

we obtain 

 

, 

obtaining the differential equation 

 

Now if we take 
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then 

                        (2.2) 

On the other hand, 

 

This is, 

                 (2.3) 

Now by (2.2) and (2.3), we have 

 

 

In this way we can associate a polynomial 

system in the plane to each family of classical 

orthogonal polynomials in table 2.2 

The following theorem appears in [20], §4.2, 

and it is included jointly with the proof for 

completeness. 

Theorem 2.3: Let ρ(x), τ(x) and λn as in the 

previous proposition. For any , the 

quadratic polynomial vector field corresponding 

to the system 

,             (2.4) 

 

has an invariant algebraic curve of the form 

, where Pn is any 

classical orthogonal polynomial associated to 

ρ(x), τ(x) and λn. 

Proof: The differential equation associated 

with the polynomial system (2.4) is: 

 

which, by Proposition 2.2 can be transformed in 

the hypergeometric equation (1.1); and for each n 

∈ Z
+
, we have the solution yn= Pn, which is a 

classical orthogonal polynomial associated with 

functions ρ(x), τ(x) and the parameter λn. 

= 0                           (2.5) 

 
Table 2.  

Family of classical orthogonal polynomials 

Family v˙ x˙ 

(α,β) 

Pn 
 

1 − x2 

Pn 
 

1 − x2 

Tn 
 

1 − x2 

Un 
 

1 − x2 

 

 

1 − x2 

 

 

x 

Ln 
 

x 

Hn 
 

1 

 

Let X be the vector field associated with the 

differential system (2.4). Now, for n fixed, we 

consider the 

polynomial ), and we 

show that it is irreducible and satisfies Xf = Kf, 

where K is the cofactor of the invariant curve f = 

0. 

We know that both Pn(x) and ) do not 

have common factors because the roots of the 

orthogonal polynomials are simple. In addition, 

with ρ(x) defined for each family of classical 

orthogonal polynomials, we have that both ρ(x) 

and Pn(x) do not share roots, because the roots of 

orthogonal polynomials remain within the range 

(a,b). In fact: 

♣ in the Jacobi polynomial, ρ(x) = 1−x
2 
whose 

roots are not in the interval (−1,1); 

♣ in the Laguerre polynomials, ρ(x) = x whose 

root is not in the interval (0,∞); and 

♣ in the Hermite polynomials,  

ρ(x) = 1; hence, the polynomial 

f(v,x) = µvPn(x) + ρPn
0 
(x) is irreducible. 

On the other hand, using the differential field 

associated with the differential system and (2.5), 

we have that 
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The above implies that ) = 0 is an 

invariant curve for the system (2.4). 

The following proposition is entirely a 

contribution of this paper:  

Proposition 2.4: The quadratic polynomial 

system (2.6) 

 

has an invariant of Darboux in the form 

. 

Proof: The algebraic curves 

f1(v,x) = x + 1 = 0, f2(v,x) = x − 1 = 0 

are invariant algebraic curves of the system (2.6) 

with cofactors 

K1(v,x) = 1 − x, k2(v,x) = −1 − x, 

respectively. 

In fact, since, for this system, the vector field 

is defined as 

, 

we obtain 

X(f1) = (1 − x)f1 and X(f2) = (−1 − x)f2. 

Now using theorem 1.4, taking s = 1, 

λ1K1 + λ1K1 = −1, 

we obtain 

λ1 = −1/2, λ2 = 1/2. 

Thus, we obtain the Darboux invariant 

. 

Now we will study the phase portraits on the 

Poincarè disk of the polynomial systems 

associated with the classical orthogonal 

polynomials, which is one of the main 

contributions of this paper. 

Proposition 2.5: The phase portrait on the 

Poincarè disk of any quadratic polynomial 

system 

               (2.7) 

with , λn > 0 and a ∈ R is topologically 

equivalent to some of the phase portraits 

described in Figure 2. 

 
Figure 2. Phase portraits for the system 2.6 

 

Proof: In the finite plane, the singular points 

of the system are (0,1),(0,−1),(−a/µ,1),(a/µ,−1). 

Two cases are possible: If  , there are 

four singular points, and if a = 0, there are only 

two singular points. 

Case 1:  

In the finite plane, there are four singular 

points: 

 

By evaluating this matrix in each of the 

singular points, we obtain 

 

 

Therefore, there are two saddle points and two 

nodes in the finite plane; one of each is stable, 

and the other is unstable. 

Case 2: a = 0 

There are only two singular points in the finite 

plane. The Jacobian matrix of the system (2.7), 

with a = 0, is 
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That is, the singular points (0,1) and (0,−1) 

are semi-hyperbolic. 

Using the theorem (1.3), we are able to 

analyze the behavior of previous singular points 

in a neighborhood of the origin. We must 

translate these points to the origin of the 

coordinated plane and, after transforming the 

system, rewrite it in a normal way (using the 

normal forms theorem). 

When we perform the following translation, 

the result will be a system topologically 

equivalent to (2.7): 

since  

 

then, 

 

This last system is topologically equivalent to 

the system (2.7) and meets the hypothesis of the 

theorem for semi-hyperbolic points. If we take 

 

and 

 

then 

 

is the solution of 

 

near of origin. 

Now,  

because the lowest-order term of the function 

g(v˜) is even, the singular point (0,1) is a saddle-

node point. 

Now, for the semi-hyperbolic point (0,−1) we 

make transformations 

  and 

, 

obtaining that (0,−1) is a saddle-node point. 

Now, we will analyze the singular points in 

infinity using the transformations on the Poincarè 

sphere [6]. 

The flow, defined by study system 2.7, on the 

equator of the Poincarè sphere, excluding 

(±1,0,0), is topologically equivalent to the flow 

defined by the system 

, 

whose singular points to study are: 

and

, 

then, 

 and 

, 

which indicates that, (v1,0) is an unstable node 

and (v2,0) is a saddle point. 

The flow defined by the study system on the 

equator of the Poincarè sphere, excluding 

(0,±1,0), is topologically equivalent to the flow 

defined by the system 

 

in which it is only necessary to study the 

behavior of the singular point, the origin: 

 

then, evaluating the Jacobian matrix in the point 

(0,0), we get: 

, 

which means the origin of this last system is a 

node, and its stability depends on the sign of µ. 

Remark 2.2: For specific values of parameter 

a, phase portraits are obtained for the polynomial 

systems associated with the following orthogonal 

polynomials: 

a = 0, Pn a = −1, Tn a = 1 Un, 

a = 2α – 1, and Cn(α). 
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Proposition 2.6: The phase portrait on the 

poincarè disk of any quadratic polynomial system 

is as follows:  

,                 (2.8) 

where µ 6= 0, λn > 0 and a, b ∈ R are 

topologically equivalent to some of the phase 

portraits described in Figure 3. 

 
Figure 3. Portraits of phase for 2.8 

 

Proof: In this system the singular points in the 

finite plane have the form (0,0) and (  0). That 

is, if a = 0 there is only one singular point and if 

a 6 = 0, there are two singular points. 

The Jacobian Matrix of the system is 

. 

Case 1: Laguerre associate a 6 = 0 

. 

Indistinct of the sign of a, in the finite plane, 

there is a saddle point and an unstable node. 

Case 2: Laguerre a = 0 

. 

This implies that the origin is a singular semi-

hyperbolic point. Making the transformations 

 

we get the following system, which is, 

topologically equivalent to (2.8): 

. 

Applying the theorem for semi-hyperbolic 

points, we use 

 
and 

B(v˜,0) = 0. 

Then x = f(v˜) = 0 is the solution of equation x 

+ B(v,˜ 0) = 0, in a neighborhood of origin. 

Now, 

g(v˜) = A(v,˜ 0) = µv˜
2 
+ o(v˜

2
); 

therefore, the origin is a saddle-node. 

Again, the singular points in infinity will be 

analyzed using the transformations on the 

poincarè sphere. 

The flow defined by study system 2.8 on the 

equator of the Poincarè sphere, excluding 

(±1,0,0), is topologically equivalent to the flow 

defined by the system: 

, 

whose singular points are: (0,0) and (−b/µ,0). If 

 there are two singular points. If b = 0 

there is only one singular point. 

The Jacobian matrix associated with this last 

system is 

                                               (2.9) 

Case 1: Laguerre and Laguerre associate 

 

 

. 

That is, (0,0) and (−b/µ,0) are semi-hyperbolic 

points. 

To express the system (2.9) in canonical form, 

and thus be able to apply the theorem for semi-

hyperbolic points, we perform the following 

transformations: 

, 
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obtaining the following system, which is 

topologically equivalent to (2.9): 

, 

where 

 

. 

Let ˜v = f(z) the solution of equation 

and  in a neighborhood of 

origin. 

Then,  

g(z) = A(f(x),z) = −z
2
,  

so (0,0) is a saddle-node. 

For the point (−b/µ,0), we will successively 

use the following transformations: 

 ,  z = z, and 

, 

obtaining the system topologically equivalent to 

(2.9): 

v¯˙ = −bv¯ + B(¯v,z) 

z˙ = −z
2
 

where 

B(0,0) = DB(0,0) = 0 

and 

A(v¯,z) = −z
2
. 

Let v¯= f(z) the solution of the equation −bv¯ 

+ B(v¯,z) = 0 in a neighborhood of the origin of 

this latter system. Then 

g(z) = A(f(z),z) = −z
2
. 

Therefore, the point (−b/µ,0) is a saddle-node. 

Case 2: b = 0 

. 

That is, the origin is a unique nilpotent point 

for this system. We make the transformation 

, 

obtaining the system topologically equivalent to 

the system (2.9): 

. 

This last system fulfills the conditions of a 

theorem for singular nilpotent points where 

A(v˜,z) = (a − 1)v˜z + λnv˜
2 
and

 
B(v˜,z) = −z

2
.
 

Otherwise, z = f(v˜) = (1 − λn − a)v˜
2 
+ 0(v˜

2
) is 

the solution to equation 

z + A(v,z˜) = 0 

in a neighborhood of the origin. 

Then, 

 

In this case m = 4 y n = 1. Since m is even and 

m >2n + 1, the origin is a saddle-node. 

For the infinity, the flow defined by the 

system on the equator Poincarè sphere, excluding 

(0,±1,0), is topologically equivalent to the flow 

defined by the system 

 

in which it is only necessary to study the 

behavior of the singular point, the origin:  

 

 

In (0,0), 

, 

that is, the origin of this last system is a node, and 

its stability depends on the sign of µ. 

Remark 2.3: In the previous proposition, for 

specific values of parameters a and b, the phase 

portraits for the polynomial systems associated 

with the following orthogonal polynomials are 

obtained: 

a = 0, b = 1 Ln 

a = −α, b = 1 L
(
n

α)
 .

 

To finish this section, we compute the 

differential Galois group and the elements of 

Darboux integrability to the quadratic polynomial 

vector field related with the Chebyshev 

differential equation. 
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Proposition 2.7: For the Chebyshev 

differential equation 

,                  (2.10) 

where λn = n
2
, n ∈ N, and the following 

statements are true: 

(1) G(L/K) of the Chebyshev equation is 

isomorphic to , where K = C(x). 

(2) The first integrals of fields 

   (2.11) 

and  

 

associated with the Chebyshev equation, are: 

 

Proof: (1) It is known that y1 = Tn and y2 = 

Un−1 1 − x
2 
are two linearly independent solutions 

for equation (2.10). If we take the differential 

body K = C(x) of all the rational functions of 

variable x, we consider the extension of the field 

L = K[ 1 − x
2
]. To calculate the differential Galois 

group of equation (2.10), all differential 

automorphisms in the extension must be 

calculated for L. That is, find a matrix 

 

such that 

 

By matrix operations we have: 

φ(y1) = ay1 + by2, φ(y2) = cy1 + dy2 

On the other hand, y1,y2 ∈ C(x) and φ are 

automorphisms, then we get 

φ(y1) = y1, φ(y2) = cy2 

when c
2 
= 1. Then we can conclude that 

 

This is, 

 

 

(2) If in the equation (2.10) we consider, then 

transformation 

 

allows us to obtain the reduced second-order 

equation 

           (2.13) 

With 

 

Since y1 = Tn and y2 = Un−1 are linearly 

independent solutions of the Chebyshev equation, 

then: 

, 

are linearly independent solutions of the reduced 

second-order equation (2.13). 

On the other hand, the differential equation 

associated with the system (2.11) has the form: 

 

and applying the transformation , is 

equivalent to the equation (2.13). From this the 

solutions of this last equation are given by: 

. 

Then, by Lemma 1 of [6], we get that the first 

integral of the system (2.11) has the form: 

. 

This is, 

 

Now to find the first integral of the system 

(2.12), it can be noticed that the foliation of this 

system and the foliation of the system (2.11) are 

, 
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. 

which are related through the transformation 

. 

Therefore, replacing, we obtain 

 

and after simplifying we get the first integral 

described for the system (2.12). 

 

IV. CONCLUSIONS  
In this paper, we studied algebraically through 

differential Galois theory and Darboux theory of 

integrability, as well as qualitatively through the 

analysis of critical points, some quadratic 

polynomial vector fields related with classical 

orthogonal polynomials. 
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