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Abstract

In the present work, our goal is to establish a study of some families of quadratic polynomial vector
fields connected to orthogonal polynomials that relate, via two different points of view, the qualitative
and the algebraic ones. We extend those results that contain some details related to differential Galois
theory as well as the inclusion of Darboux theory of integrability and the qualitative theory of dynamical
systems. We conclude this study with the construction of differential Galois groups, the calculation of
Darboux first integral, and the construction of the global phase portraits.
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|. INTRODUCTION

This paper is a follow-up to [1] and a slight
improvement over [2]. To study any process of
variation with respect to time, the theory of
dynamical systems has been developed, which is
also endowed with algebraic and qualitative
techniques, among others. Although, in a general
case, it is not possible to find the solution of a
differential equation that models a specific
process, we can identify geometric structures
having influence over qualitative properties such
as stability and invariant sets attractors, among
others, see [3], [4], [5], [6], [7], [8]. [9], [10] for
further details. In the algebraic sense, E. Picard
and E. Vessiot introduced an approach to study
linear differential equations based on the Galois
theory for polynomials [3], which is known as
differential Galois theory or Picard-Vessiot
theory [11], [12], [13], [14] for further details.
Also, G. Darboux introduced an algebraic theory
to analyze the integrability of polynomial vector
fields, which is known as Darboux theory of
integrability [15]. The final ingredient of this
paper corresponds to orthogonal polynomials
[16], [17], which are very important in both
theoretical and applied mathematics: they
contribute to random matrices, approximation
theory, trigonometric series, and especially
differential equations, among others.

Concerning applications of differential Galois
theory to dynamical systems, [18], [19] presented
techniques to determine the non-integrability of
Hamiltonian systems, which can be found in [1],
[18], [19], [20], [21], [22], while [1], [20]
presented techniques to study planar polynomial
vector fields. In the same way, applications to
Quantum Mechanics can be found in [21], [22].
Combinations of algebraic and qualitative
techniques to study planar vector fields were
presented in [22], [23]. This paper is a sequel of
[1], and in particular is an extension of section
§4.2. We follow the same structure of papers
[22], [23] concerning the algebraic and
gualitative techniques to study the polynomial
vector fields. We remind the reader that for
algebraic analysis, differential Galois theory, and
Darboux integrability, we consider vector fields
over the complex numbers, while for qualitative
analysis we consider the vector fields over the
real numbers.

1. PRELIMINARIES
In this section we present the basic theoretical
background needed to understand the rest of the

paper.

A. Classical Orthogonal Polynomials

The main objects of study in this work are
guadratic  polynomial  differential  systems
associated to classical orthogonal polynomials. In
particular we focus on the sequences of classical
orthogonal polynomials of the hypergeometric
type—that is, orthogonal polynomials satisfying
the differential equation

p(X)y +7(X)y + 2y =0, (1.1)

where p(X), 7(x) are polynomials and 1 depending
on n is given in the next table:

Table 1.

Polynomial list
p(X) (X) n
1-xX f-a—(a+f+2)x nn+1l+a+p)
1-x¢ -2 n(n + 1)
1-x¢ —x n2
1-x*  —-3x n(n +2)
1-x*  —(Qa+1)x n(n + 1 + 2a)
X a+1-x n
X 1-x n
1 —2X 2n

Moreover, it is well known that classical
orthogonal polynomials can be obtained by
Rodrigues formula [16], [17]. In a general form,
the constant 1, can be obtained as follows:

n—1
An = —n (T' + 2 5 p”(;r))

Thus, the object of study becomes the
differential system

dv

Wo=2mp+ (0 -+

dx

a P
and its associated foliation becomes

dv Ay N o *TV+ Koo
p

dr o p

We claim that gt # 0 because we are studying
quadratic polynomial vector fields.

B. Critical Points



We recall that a real vector field y is a
function of C'class wherer € NU o, o (ifr=w
we say that the function is analytic). Moreover, y:
A— R and A is an open subset of K. For instance,
the differential system associated to the vector
field y is given by £ = yx(x). Now, based on
[3], [7], we present the classification of some
critical points used in the main results of this
paper. The following theorem is concerning
hyperbolic critical points.

Theorem 1.1: Let (0,0) be an isolated singular
point of the vector field X associated to

v = av + bx + A(v,x), (1.2)
x= cov + dx + B(v,x),

where A and B are analytic in a neighborhood of
the origin with A(0,0) = B(0,0) = DA(0,0) =
DB(0,0) = 0. Let A;and A, be an eigenvalue of the
linear part DX(0,0) of the system at the origin.
Then the following statements hold:

If A, and A, are real and A2, < 0, then (0,0) is a
saddle. If we denote by E; and E, the eigenspaces
of respectively A; and A, then one can find two
invariant analytic curves, tangent respectively to
E; and E, at 0. On one of the points of E; the
analytic curves are attracted towards the origin,
while on one of the points of E, the curves are
repelled away from the origin. On these invariant
curves X is C“—linearizable. There exists a C”
coordinate change transforming (1.2) into one of
the following normal forms:

v =24V
X= %

inthe case A, / A, € R\ Q, and
v =v(q + (Vo)
X =x(A; + g8(Viux))s

in the case A, / A=~k /1 € Q with k,I €M and
where f,g are function C*. All systems 1.2 are C’-
conjugate to

v =,
X= —X

If A, and A, are real with |Ay| > [A4| and A2, > 0,
then (0,0) is a node. If &, > O (respectively < 0),
then it is repelling or unstable (respectively
attracting or stable). There exists a C* coordinate
change transforming (1.2) into

X = 7\‘1X,
y =AY,
incase A/ A,6 € N, and into

x= X

v = Ay + nx",
for somen =0or 1, in case A, = mi;withm € N
and m > 1. All systems are C’—conjugate to

= nx

vV = ny

withn==+1 and A;m > 0.

If y=oa+ piand A, = a — Bi witha,B =0
then (0,0) is a “strong” focus. If o> O
(respectively a< 0), it is repelling or unstable
(respectively attracting or stable). There exists a
C” coordinate change transforming (1.2) into

= ox + By,

y= —px + ay.

All systems (1.3) are C’—conjugado to
iI= nx

y=y,

with n==1 and on> 0.

If A, = Bi and A,= —Bi with § == 0, then (0,0)
is a linear center topologically, a weak focus or a
center.

The following theorem corresponds to Semi-
hyperbolic critical points.

Theorem 1.2: Let (0,0) be an isolated singular
point of the vector field X given by

X= Axy) (1.3)

y= Ay + B(x,y)

where A and B are analytic in a neighborhood of
a origin with A(0,0) = B(0,0) = DA(0,0) =
DB(0,0) = 0 and A > 0. Let y = f(x) be the
solution of equation Ay + B(xy) = 0 in a
neighborhood of the point (0,0), and suppose that
the function g(x) = A(X,f(X)) has the expression
g(x) = apx™ + o(x™), where m > 2 and a,,, # 0.
Then, there always exists an invariant analytic
curve, called the strong unstable manifold,
tangent at 0 to the O to the y—axis, on which X is
analytically conjugate to

dx

E = Ar;

It represents repelling behavior since A > 0.
Moreover, the following statements hold.

() If m id odd and a, < 0 then (0,0) is a
topologycal saddle. Tangent to the x—axis there is
a unique invariant C” curve, called the center
manifold, on which X is C*-conjugate to

X = —x™(1 + ax™1),

for some a € R.
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If this invariant curve is analytic, then on it X
is C*-conjugate to

¥ = —x™(1 + ax™1), V= Ay,

and is C°-conjugate to

X= —% V=V

(i) if mis odd and ay > O, the origin is a
unstable topological node. Every point not
belonging to the strong unstable manifold lies on
an invariant C” curve called a center manifold,
tangent to the x-axis at the origin, and on which
X is a C*-conjugate to

¥ = x™(1 + ax™ 1),

for some a € R.

All these center manifolds are mutually
infinitely tangent to each other, and hence at most
one of them can be analytic, in which case X is
C”-conjugate to

¥ = x™(1 + ax™ 1),

y=A2

And is C’-conjugate to

=%

y=1y.

(ii) If m is even, then (0,0) is a saddle node,
that is a singular point whose neighborhood is the
union of one parabolic and two hyperbolic
sectors. Modulo changing x into —x, we suppose
that a,,> 0. Every point to the right of the strong
unstable manifold (side x > Q) lies on a invariant
C”curve, called a center manifold, tangent to the

x-axis at the origin, and on which case X is a C*-
conjugate to

¥ = x™(1 + ax™ 1),

for some a € R. All these center manifold
coincide on the side x < 0 and are hence infinitely
tangent at the origin. At most one of these center
manifolds can be analytic, in which case X is C*-
conjugate to

¥ = x™(1 + ax™ 1),

y= Ay,
and is C°-conjugate to

2
X=X,

y=Ay.

The following theorem is concerning to
Nilpotent singular points.

Theorem 1.3: Let (0,0) be an isolated singular
point of the vector field X given by

X=x + Axy)

V= B(xy),

where A and B are analytic in a neighborhood of
the point (0,0) and also j;A(0,0) = j;B(0,0) = 0.
Let y = f(x) be the solution of the equations
y + A(x,¥) = 0in aneighborhood of the point
(0,0), and consider F(x) = B(x,f(x)) and G(X) =
(0A/ov + 0OB/ox)(x,f(x)). Then the following
holds:

(i) IfF(x)=G(x) =0, then the phase portrait
of X is given by 1a.

(i) SiF(x) =0 and G(v) = bx"+ o(x") with n
€ N, n > 1 and b 6= 0, then the phase portrait of
Xisgivenby 1boc.

(iii) If G(v) = 0 and F(x) = ax™+0(x™) with m
€N, m>1 and a 6= 0, then:

If mis odd and a > 0, then the origin is a
saddle (1d) and if a < 0, then it is a center or
focus ( 1e — f).

If m is even the origin of X is a cusp (1h).

(iv) IfF(x) = ax™ + o(x™)and

G(x) = ax™+ o(x™)withmn e N, m > 1,
n>landa= 0,b = 0, then we have:

If mis even, and m < 2n + 1, then the origin
of is a cusp 1h,or m > 2n + 1, then the origin is a
saddle-node 1i or j

If mis odd and a > O then the origin is a
saddle 1d.

If mis odd, a <0 and Either m< 2n+1, orm =
2n+1 and b? +4a(n+1) < 0, then the origin is a
center or focus (figure 1e, g).

If n is odd and either m > 2n + 1, or m=2n +
1 and b®+ 4a(n+1) > 0, then the phase portrait of
the origin of X consist of one hyperbolic and one
elliptic as in figure (1k).

n is even and either m > 2n+1, or m > 2n+1
and b*4a(n+ 1) > 0 then the origin of X is a
node as in figure 11, m. The node is attracting if b
<0 and repelling if b > 0.

-
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Figure 1. Portraits of phase for 2.8 [3]
For complete study of these theorems see [3].

C. Invariants Curves



Let be the differential polynomial complex
system

= P(x,y).
(1.4)

y=Qxy),

and m = max{degP,degQ}.

Theorem 1.4: Suppose that a C—polynomial
system (1.4) of degree m admits p irreducible
invariant algebraic curves f;= 0 with cofactors K;
= 1,2,...,p; q exponential factors exp(gi/h;) with
cofactors L;, j = 1,2,..,q, and r independent
singular points (XcYi) € C?such that fi(x,yx)= 0)
then if there exits A;,u; € C no not all zero such
that

D g
i=1 j=1

for some s € C\{0}, then the (multivalued)
function

A1 A 11 g 5t
P T F e

is an invariant of system (1.4).

For a complete version if this theorem see
[13], §8, pp. 219.

The following theorems concern to singular

. P X ¥
points at infinity, where x = 2 andy = >

Theorem 1.5: The critical points at infinity for
the mth degree polynomial system (1.4) occur at
the points (X,Y,0) over the equator of the
Poincare sphere, being

X2+YZ2=1and XQun(X,Y )= Y Py(X,Y) = 0.

Theorem 1.6: The flow defined in a
neighborhood of any critical point of (1.4) (with
mentioned change of variable) over the equator
of the Poincaré sphere S? except the points
(0,£1,0), is topologically equivalent to the flow
fined by the system:

+y =y P(L 1) - 2mQ(L, L)

=i =zmP(L D), (15)

being the signs determined by the flow on the
equator of S*such as was determined in Theorem
1.5. Similarly, the flow defined by (1.4) (with the
mentioned change of variable) in a neighborhood
of any critical point of (1.4) on the equator of S*
except the points (£1,0,0) is topologically
equivalent to the flow defined by the system:

+i =azmQ(L, 1) —2mP(2,1)

2 =P Y, (1.6)

the signs being determined by the flow on the
equator of S?as determined in the theorem (1.5).
This theory can be study in detail on [3], [7].

I11. RESULTS AND DISCUSSION

In this section we demonstrate the main
results of the paper. We begin by presenting
some results of orthogonal polynomials theory
from a Galoisian point of view. The following
proposition relates the classical Galois theory
with orthogonal polynomials.

Proposition 2.1: If P, is an orthogonal
polynomial, then for the splitting field of the
polynomial Pn(x) over R, (R{Pn(x)}); we know
that R{Pn(x)} = R.

Proof: As the roots a,...,a, Of any orthogonal
polynomial P, of degree n are real and distinct,
then

R{P.} = R[a,...,an].

Taking the integral domain R[a;]. By
definition, we know that

Rlaa] = {f(ew)/f(x) €R[X]}.

Thus, f(ay) € R. In this way R[ay,...,an] =R
Remark 2.1: From the previous proposition, we
can observe that if we take the real members as
the base field, then the splitting field of any
orthogonal polynomial is again the real numbers.
That is, the extension L = R{P,} = R, and
therefore the Galois group of the polynomial is
G(L\R) = {f: f(x) = x,vxeR} =

The following proposition appears in [5],
§4.2, and it is included jointly with the proof for
completeness.

Proposition 2.2: If we consider two
polynomials p(x), ©(x) and the parameter A, from
the previous table, then for any p, the Riccati
type differential equation

@7&_}_;)’—7 K2

= v _|_ —
dx I o P

: (21)

can be transformed into the hypergeometric type
equation (1.1).

p(X)Y + KiPyy'+ 1y =0

Proof: Making the change of variable w = pv,
we obtain

o=
=M\, + p— [ + l'uzvz
=\, + -‘”f—ju: + F'w ,
obtaining the differential equation

dw ) — T 1 .
— =X\ + f w+ —w?
dx P P

Now if we take

!
an — —ni
w=—p5
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then

dw dy ; p
1 W—— = — — M
Viz TV Py py (2.2)
On the other hand,
y% - u:% =y [)\,, - ”:" (p%) + {% (,{J%)L +} + (p%) Y

= ;!1/\» - P’U’ + Tyf

This is,

dw dy
A g — = A oA ‘l‘.”
Vg TVWag ¥ —PY Y (2.3)

Now by (2.2) and (2.3), we have

V= PY + Y = —py' - py”,

py' + '+ Ay = 0.

In this way we can associate a polynomial
system in the plane to each family of classical
orthogonal polynomials in table 2.2

The following theorem appears in [20], §4.2,
and it is included jointly with the proof for

Theorem 2.3: Let p(x), 1(x) and A, as in the
previous proposition. For any p= 0, the
quadratic polynomial vector field corresponding
to the system

O A YV BTN

dx

a =P

has an invariant algebraic curve of the form
poby(x) +plx) P (r) =0 where P, is any
classical orthogonal polynomial associated to
p(x), ©(x) and A,

Proof: The differential equation associated
with the polynomial system (2.4) is:

; /
@ = An =+ L T’L’ + E‘UZ
dr p P
which, by Proposition 2.2 can be transformed in
the hypergeometric equation (1.1); and for each n
€ Z', we have the solution y,= P,, which is a
classical orthogonal polynomial associated with
functions p(x), 7(x) and the parameter A,.

completeness. p(x) Py + 7P, + A Pa= 0 (2.5)
Table 2.
Family of classical orthogonal polynomials
Family v’ X’
(a.p) %(1 —2)+(aB +(af Jr)+m? 1-X
P, )
Pn )‘#—1(1 —x?) + w? 1-x%
R T ETRYT
U, a1 — %) + xv + 1-x
) ):T(l — 7)) + (2o — D)zv + po? 1=
L Zet(—ata)utm? X
Ly %L;r + zv + p? X
Hn ):—f + 220 + po? 1

Let X be the vector field associated with the
differential system (2.4). Now, for n fixed, we
consider the
polynomial /f(v. #) = pvPy(x) + pF (), and we
show that it is irreducible and satisfies Xf = Kf,
where K is the cofactor of the invariant curve f =
0.

We know that both P,(x) and F.(%) do not
have common factors because the roots of the
orthogonal polynomials are simple. In addition,
with p(x) defined for each family of classical
orthogonal polynomials, we have that both p(x)
and P,(x) do not share roots, because the roots of
orthogonal polynomials remain within the range
(a,b). In fact:

& in the Jacobi polynomial, p(x) = 1-x* whose
roots are not in the interval (—1,1);

% in the Laguerre polynomials, p(x) = x whose
root is not in the interval (0,); and

& in the Hermite polynomials,

p(x) = 1; hence, the polynomial

f(v,X) = uvPy(x) + pPyC (x) is irreducible.

On the other hand, using the differential field
associated with the differential system and (2.5),
we have that

Xf = (%;ﬁ (pf = K1 P+ ,l(i‘:’) % + p‘f%
= (%I’Jr (' = KiPv+ 1“‘2) 1P+ p (poly + o P+ pP P
= p'(pP, + pPl) + pw(pv Py + pPl) — pKy PP, + plpPy + Auly)
= p'(pvP, + pPl) + pw(pv P, + pPl) — pK PP, — K\ PypP),
= /(P + pPy) + po(uo P, + pPy) = KyPy(po Py + pPy)
= (¢ + o — Ki Py (P + pPL)

Xf = +p—KP)f



The above implies that 1Pt +¢F(r) = 0 is an
invariant curve for the system (2.4).

The following proposition is entirely a
contribution of this paper:

Proposition 2.4: The quadratic polynomial
system (2.6)

An .

o= “(1-2% +avz +bv+ w? = Plv,x)

f
t= 1-—2a?

has an invariant of Darboux in the form

i

et

ve+1
Proof: The algebraic curves
fi(vx)=x+1=0,f,(vx)=x—-1=0

are invariant algebraic curves of the system (2.6)
with cofactors

Ki(v,x) =1 = X, kao(v,X) = =1 — X,

respectively.
In fact, since, for this system, the vector field
is defined as

I(v,z,t) =

X = P('u,:r')% + (1 — ;1:‘)—.

we obtain
X(f) = (1 =x)frand X(f2) = (=1 = x)f.
Now using theorem 1.4, taking s = 1,
MK+ LK =1,

we obtain
J=-112, 2,=1/2.
Thus, we obtain the Darboux invariant

vr—1 o
v+ 1() .

Now we will study the phase portraits on the
Poincar¢ disk of the polynomial systems
associated with the classical orthogonal
polynomials, which is one of the main
contributions of this paper.

Proposition 2.5: The phase portrait on the
Poincare disk of any quadratic polynomial
system

{ o= Z2(l—a%) +ave + w?

I(v,2,t) =

t= 1—=

2.7)

withp = 0, A, > 0 and a € R is topologically
equivalent to some of the phase portraits
described in Figure 2.

e

Figure 2. Phase portraits for the system 2.6

Proof: In the finite plane, the singular points
of the system are (0,1),(0,—1),(~a/u,1),(a/u,—1).

Two cases are possible: If @ = 0, there are
four singular points, and if a = 0, there are only
two singular points.

Casel:a =0

In the finite plane, there are four singular
points:

ar +2uv 2 %;L‘ + av
DX (v,x) =

0 —2x

By evaluating this matrix in each of the
singular points, we obtain

DX(0,1) = [ ¢ 2l }

DX(-a/p,1) = [0“' (2)‘7}-_262)/#]

DX(0,~1) = {{f 2*;/“]

9
DX(a/u,—1) = { g (2An 9”- )/ 1 }

Therefore, there are two saddle points and two
nodes in the finite plane; one of each is stable,
and the other is unstable.

Case2:a=0

There are only two singular points in the finite
plane. The Jacobian matrix of the system (2.7),
witha=0,is

2w —2%;1:_
DX(v,z) =

0 —2x
DX(0,1) = [8 _2:\2'/“

DX_(Q._—I?: {8 2)\;/;&]
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That is, the singular points (0,1) and (0,—1)
are semi-hyperbolic.

Using the theorem (1.3), we are able to
analyze the behavior of previous singular points
in a neighborhood of the origin. We must
translate these points to the origin of the
coordinated plane and, after transforming the
system, rewrite it in a normal way (using the
normal forms theorem).

When we perform the following translation,
the result will be a system topologically
equivalent to (2.7):

since¥ = x —1,v= 1w

An(_0m_ 22 2
{ 0 (28 — 3%) +
z

= —2F— 2,
then,
~ Aﬂ- ~
v=v——I,
n

. 2 .

6= ZRE%+200F + pi”

F= —2F— 32

This last system is topologically equivalent to
the system (2.7) and meets the hypothesis of the
theorem for semi-hyperbolic points. If we take

A2 ..
T2 L 2N0E 4 i

A(v,7) = ”
and
B(#,%) = —%2,
then
F=f(0) = =50 +o(0”)

is the solution of
—2%+ B(#,%) = 0

near of origin.

Now, g(%) = A(v, f(¥)) = uv2 + o(92)

because the lowest-order term of the function
g(v") is even, the singular point (0,1) is a saddle-
node point.

Now, for the semi-hyperbolic point (0,—1) we
make transformations

v, f=x+1 and

=p—2aF
I

15

[l
g2
N

T
obtaining that (0,—1) is a saddle-node point.

Now, we will analyze the singular points in
infinity using the transformations on the Poincare
sphere [6].

The flow, defined by study system 2.7, on the
equator of the Poincaré sphere, excluding

(x1,0,0), is topologically equivalent to the flow
defined by the system

b= Ao/t (a4 Do+ po? + N, [p2® - v2?
= -4z

whose singular points to study are:

—(a+1)++/(a+1)2+4,
('(51‘0) = ( ) Q(u ~0)

2u

and

(a+1)+2u—2* v 2%3 — 2z
DX(v,z) =
0 —322 41
then,
L+ 12440, 0
DX(u},0) = { (“g * 1]
and
o [/ DrEay, 0
D‘X(E-Q.U)— { 0 1

which indicates that, (v4,0) is an unstable node
and (v,,0) is a saddle point.

The flow defined by the study system on the
equator of the Poincaré¢ sphere, excluding
(0,+1,0), is topologically equivalent to the flow
defined by the system

P Ange2  Ang3 o 2 -2
{1— Lzt = w2 (a+ 1)z

5 — An o3 4 Ap .2 - o

Z= gt Itz —arz — pz

in which it is only necessary to study the
behavior of the singular point, the origin:

—%:2 +320% — = 2a+1)r —2%1‘2 +22

DX(x,z2) =

A pr _qM,2 4 Ang2 o
25m0z —az 3pzt  frrt —ar — p

then, evaluating the Jacobian matrix in the point
(0,0), we get:

_ —p 0
DX(0,0) = [ 0 —u ]
which means the origin of this last system is a
node, and its stability depends on the sign of u.

Remark 2.2: For specific values of parameter
a, phase portraits are obtained for the polynomial
systems associated with the following orthogonal
polynomials:

a=0,P,a=-1,T,a=1U,,
a=2a-1,and Cn(a).



Proposition 2.6: The phase portrait on the
poincare¢ disk of any quadratic polynomial system
is as follows:

{ U= %‘-.L + av + bvx + pv?

T= z : (2.8)

where 4 6= 0, 4, > 0 and a, b € R are
topologically equivalent to some of the phase
portraits described in Figure 3.

Figure 3. Portraits of phase for 2.8

Proof: In this system the singular points in the
—a

finite plane have the form (0,0) and ( # 0). That
is, if a = 0 there is only one singular point and if
a 6 = 0, there are two singular points.

The Jacobian Matrix of the system is

A
a+br+2umw S+
DX(v,x) = H
0 1

Case 1: Laguerre associatea 6 =0
DX(0,0) = H (1]] DX(~a/u.0) = [ _O”' _“’f/"]

Indistinct of the sign of a, in the finite plane,
there is a saddle point and an unstable node.
Case 2: Laguerrea =20

DX(0,0) = {8 [1)]

This implies that the origin is a singular semi-
hyperbolic point. Making the transformations

we get the following system, which is,

topologically equivalent to (2.8):

)\??(b+)\??)
,LL

22 + (b+ 2\, 0z + pv?

U=

Applying the theorem for semi-hyperbolic
points, we use

An. (b + A'u,)

A(v,z) = .

22 + (b+ 2)\,) 0z + po?

B(v",0) = 0.

Then x = f(v") = 0 is the solution of equation X
+ B(v,” 0) = 0, in a neighborhood of origin.
Now,

g(v) = A(v,” 0) = wv™* + o(v);

therefore, the origin is a saddle-node.

Again, the singular points in infinity will be
analyzed using the transformations on the
poincare sphere.

The flow defined by study system 2.8 on the
equator of the Poincaré¢ sphere, excluding
(£1,0,0), is topologically equivalent to the flow
defined by the system:

A )
b= Zz4+bu+(a—1)vz+ p?
i

i= —z

whose singular points are: (0,0) and (—b/u,0). If
b = 0 there are two singular points. If b = 0
there is only one singular point.

The Jacobian matrix associated with this last
system is

DX(v,z) = [ b+ (a—1)z+2vu
0
% + (a—1)v ]
o (2.9

Case 1: Laguerre and Laguerre associate
b=0

b AH
DX(0,0) = m
0 0

l An +b(1 —a)
DX(=b/p,0)=| " 7 .
0 0

That is, (0,0) and (—b/u,0) are semi-hyperbolic
points.

To express the system (2.9) in canonical form,
and thus be able to apply the theorem for semi-
hyperbolic points, we perform the following
transformations:

A
0="z4+bv 2=z
I ,
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obtaining the following system, which is
topologically equivalent to (2.9):

b= bi+ M& +(a—1—2\,/b)iz + %52
L )
i — _:2
where
maa:fﬂiﬁﬂﬂ9%+m—1—mﬁmm+%#
1%
A(D,2) = —22

Let "v = f(z) the solution of equation
and bv"+ B(v",z) = 0 in a neighborhood of
origin.

Then,

9(2) = A(f(x).2) = 2%,

s0 (0,0) is a saddle-node.
For the point (—b/u,0), we will successively
use the following transformations:

. b N b
v=v+ — v=v+ —
oo Wz = 'z, and
An +0(1—a) N

V= ———2— b 2=z

1 :
obtaining the system topologically equivalent to
(2.9):
v =-bv +B(Vv,2)
2

7'=-z
where

B(0,0) = DB(0,0) =0
and

AWV 2) =7

Let v = f(z) the solution of the equation —bv
+ B(v ,z) = 0 in a neighborhood of the origin of
this latter system. Then

9(z) = A(f(2),2) = 22

Therefore, the point (—b/u,0) is a saddle-node.
Case2:b=0

U AH
DX (0,0) = m

0 0

That is, the origin is a unique nilpotent point
for this system. We make the transformation

- 7

V=7, =z

/\-n

obtaining the system topologically equivalent to
the system (2.9):

{ 0] z+(a—1)vz + A, 02

_ 22

~

=
Z

This last system fulfills the conditions of a
theorem for singular nilpotent points where

AVi,z)=(@—-1)Vvz+ Jv2and B(v",z) = 2

Otherwise, z = f(v") = (1 — 1,— a)v-2+ 0(v?) is
the solution to equation

zZ+AV,2)=0

in a neighborhood of the origin.
Then,

F(@) = B, f(0)) = —(1 =\, — a)?3* + o(d?)

G(v) = ({();:1 + ?f) (0, f(D)) = 2M\,0 + 0(D)

In this case m =4 y n = 1. Since m is even and
m >2n + 1, the origin is a saddle-node.

For the infinity, the flow defined by the
system on the equator Poincare sphere, excluding
(0,+1,0), is topologically equivalent to the flow
defined by the system

{ = (1—a)zz— %3_123 — ba? — px

T _ﬁ 2 _ 2 _ oo
z = m Tz az Tz Mz,

in which it is only necessary to study the
behavior of the singular point, the origin:

DX(x,z) =

Y 9 A e Oy _ . An 2
(1—a)z 2-222 2bx — (1—=a)x o
72 2 - 7)’\“\:‘:7211:7.:‘711

In (0,0),

DX(0,0) = [0" _(L]

that is, the origin of this last system is a node, and
its stability depends on the sign of u.

Remark 2.3: In the previous proposition, for
specific values of parameters a and b, the phase
portraits for the polynomial systems associated
with the following orthogonal polynomials are
obtained:

a=0, b=1 L,
a=-a, b=1 L(».

To finish this section, we compute the
differential Galois group and the elements of
Darboux integrability to the quadratic polynomial
vector field related with the Chebyshev
differential equation.



Proposition 2.7: For the Chebyshev
differential equation

Ty An o

L l—rgy_u, (2.10)

where &, = n>, n € N, and the following
statements are true:

(1) G(L/K) of the Chebyshev equation is
isomorphic to Z,, where K = C(x).

(2) The first integrals of fields

{ W= —2—4\, + (4X, — D)z — 4(1 — 2*)*w?
= 4(1-2%)? (2.11)
and

. An . .

)= Z(1—a?) —zv 2

{ . (1 —a7) —zv+ w

= 1-—2°

associated with the Chebyshev equation, are:

+ vai—l 3z
—uw e
_ Drn—l 2(1 _‘,1.2) bT“71 3
Hw,z) = . T . T -z

—w T

T, T 20— 22
and

T 2 T P

I(v,z) = Una (1= 2) 4+ Un sl = @) 1=

TH(1—22) + uT,vx

Proof: (1) It is known that y; = T,and y, =
U, 1 — x*are two linearly independent solutions
for equation (2.10). If we take the differential
body K = C(x) of all the rational functions of
variable x, we consider the extension of the field
L = K[ 1 — x*]. To calculate the differential Galois
group of equation (2.10), all differential
automorphisms in the extension must be
calculated for L. That is, find a matrix

a b
4= ¢ 4]
such that

G'.) yl = ;4# Ul s
oy 1y

By matrix operations we have:

o(y1) = ay1 + by,, p(y,) = cy; + dy,

On the other hand, y;,y. € C(x) and ¢ are
automorphisms, then we get

o(Y1) = Y1, 9(Y2) = Cy2
when ¢?= 1. Then we can conclude that

1 0
A‘b:{() (:]

This is,

11

moms ([ 815 4 ==

—x An
@) = TR Y W) = 1

(2) If in the equation (2.10) we consider, then
transformation

Y= 267% [ bi(z)de

allows us to obtain the reduced second-order
equation

(2=t AN (1 —a?)
B 41 — 22)? -

(2.13)
With
z=y(1—2?)i
Since y; = T, and y, = U, are linearly
mceiﬁ!oendent solutions of the Chebyshev equation,

21 =Tn(1 —2?)7, 2y =Upy(1—-2%)1

are linearly independent solutions of the reduced
second-order equation (2.13).

On the other hand, the differential equation
associated with the system (2.11) has the form:

W — —2 — 4N, + (=1 +4\,)2? w2
) 4(1 — 22)? '

~

z

and applying the transformation =z , s
equivalent to the equation (2.13). From this the
solutions of this last equation are given by:

/ 7

z M T
wy = i - (lTLZ]_), - ? - 2(1 - ,1.2)
and
2 U’ 3z
J _ 2 — SV — n—1 o
Wo = - (Inz) Una  20—27),

Then, by Lemma 1 of [6], we get that the first
integral of the system (2.11) has the form:

7““(3:) + W (I) i e(f(wg(:{)7LUL(J:))(1!J;)

Iw.z) =
(w,) —w(x) + un (x)
This is,
Ul 3
BT Ty
I(w,z) = :'[I‘,,_l - T 5_,1:1\/1—:1;2
—w R "
T. 2(1—2?)

Now to find the first integral of the system
(2.12), it can be noticed that the foliation of this
system and the foliation of the system (2.11) are

A T 1) .
n v+ 15 02
2

! ML v
oo 1—a? 1-

v =
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*2*4’ i 4n*]-‘”2
w' = A +( A )*L —’U:‘Q

4(1 — 22)?

which are related through the transformation
T o w
2(1—-2%) 1-—a2

w=—

Therefore, replacing, we obtain

T L _m Ul _, 3x
21—a2%) 1-22 U,y 2(1-2?) ) Un_1
z v T T T,
G + PEEE—— m —7
21—22) 1-22 T, 2(1-2?)

I(v,z) = 1—x2

and after simplifying we get the first integral
described for the system (2.12).

V. CONCLUSIONS

In this paper, we studied algebraically through
differential Galois theory and Darboux theory of
integrability, as well as qualitatively through the
analysis of critical points, some quadratic
polynomial vector fields related with classical
orthogonal polynomials.
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