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This paper presents the evaluation of two computational 
techniques for smoothing noise that might be present 
in synthetic images or numerical phantoms of magnetic 
resonance (MRI). The images that will serve as the data-
bases (DB) during the course of this evaluation are avail-
able freely on the Internet and are reported in special-
ized literature as synthetic images called BrainWeb. The 
images that belong to this DB were contaminated with 
Rician noise, this being the most frequent type of noise 
in real MRI images. Also, the techniques that are usually 
considered to minimize the impact of Rician noise on the 
quality of BrainWeb images are matched with the Gauss-
ian filter (GF) and an anisotropic diffusion filter, based on 
the gradient of the image (GADF). Each of these filters has 
2 parameters that control their operation and, therefore, 
undergo a rigorous tuning process to identify the optimal 
values that guarantee the best performance of both the 
GF and the GADF. The peak of the signal-to-noise ratio 
(PSNR) and the computation time are considered as key 
elements to analyze the behavior of each of the filtering 
techniques applied. The results indicate that: a) both fil-
ters generate PSNR values comparable to each other. b) 
The GF requires a significantly shorter computation time 
to soften the Rician noise present in the considered DB. 

Keywords: Synthetic Cerebral images, Magnetic reso-
nance, Rician noise, Gaussian filter, Anisotropic diffusion 
filter, PSNR.

Este artículo presenta la evaluación de dos técnicas com-
putacionales para el suavizado de ruido, que puede estar 
presente en imágenes sintéticas o phantoms numéricos de  
resonancia magnética (MRI). Las imágenes que servirán 
como bases de datos (DB) para el desarrollo de la men-
cionada evaluación están disponibles, de manera libre, en 
la Internet y se reportan, en la literatura especializada, 
como imágenes sintéticas denominadas BrainWeb. Las 
imágenes pertenecientes a esta DB fueron contaminadas 
con ruido Riciano debido a que este es el tipo de ruido 
más frecuente en imágenes de MRI reales. Por otra parte, 
las técnicas consideradas para minimizar el impacto de 
este ruido, en la calidad de las imágenes de la BrainWeb, 
se hacen coincidir con el filtro Gausiano (GF) y un filtro de 
difusión anisotrópica, basado en el gradiente de la imagen 
(GADF). Cada uno de estos filtros posee 2 parámetros que 
controlan su funcionamiento y, por ende, deben some-
terse a un proceso de entonación riguroso para identificar 
los valores óptimos que garanticen el mejor desempeño 
tanto del GF como del GADF. El pico de la relación señal 
a ruido (PSNR) y el tiempo de cómputo son considerados 
como elementos clave para analizar el comportamiento 
de cada una de las técnicas de filtrado aplicadas. Los re-
sultados indican que: a) Ambos filtros generan valores de 
PSNR comparables entre sí. b) El GF requiere de un tiempo 
de cómputo, significativamente, menor para suavizar el 
ruido Riciano presente en la DB considerada.

Palabras clave: Imágenes sintéticas cerebrales, Resonan-
cia magnética, Ruido Riciano, Filtro Gausiano, Filtro de 
difusión anisotrópica, PSNR.
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he magnetic resonance imaging (MRI) databas-
es of real and synthetic data images are affected 
by a type of noise called Rician noise1,2. In MRI, 

there are several ways to attain the images, called: Proton 
Density (PD) and relaxation times (T1 and T2). Briefly, it 
should be pointed out that PD, T1 and T2 consider param-
eters of the tissues that make up the organ from which 
the acquisition is intended1,3. In that sense, PD represents 
the concentration of protons in the referred tissues; while 
T1 and T2 take into account the relaxation times of tissues 
with a preponderance in a particular direction2,4.

Additionally, the mathematical model that governs Rician 
noise is that of a Rician probability distribution P(Z), which 
is given by equation 12.

                          (1)

Where: Z is the intensity of the observed voxel (Av), a is 
the true intensity value of the Av, s is the standard devia-
tion of all the values of Z and I0 is a Bessel function of first 
type and zero order.

For the development of this comparative study a synthetic 
database was considered, called BrainWeb3,4, which is 
available for free downloading on the Internet, at the 
address http://brainweb.bic.mni.mcgill.ca/brainweb/. Im-
ages of this BrainWeb base have as a particular charac-
teristic to be contaminated with Rician noise and that was 
the reason why it was selected as a synthetic reference 
database for the present work. The features of BrainWeb 
are described in the next section5.

Description of the databases used: Base BrainWeb
The BrainWeb database (DB) aims to contribute to the 
validation of techniques that allow the analysis of data 
from medical images. BrainWeb are images of the human 
brain generated by a magnetic resonance simulator from 
a real phantom6. The BrainWeb DB consists of: 

a) Several volumes (3D images) contaminated with differ-
ent levels of Rician noise.

b) A reference volume (ground truth) that is normally used 
to measure the performance of filtering techniques in 
response to the Rician noise.

For example, if the acquisition is made with the T1 mode 
and brain images containing 8-bit unsigned integer the 
level gray levels are generated, according to Coupé et al.7, 
the mean of the brightest tissue intensity is 150. In this 
DB, the noise is expressed as a percentage of the stan-
dard deviation of this mean. In this sense, a portion of the 

BrainWeb database is composed of volumes contaminat-
ed at 1%, 3%, 5%, 7% and 9%. Coupé et al.7describe 
how the process of contamination of the data that make 
up the BrainWeb database is carried out.

For experimental purposes, the ground truth was selected 
and a volume acquired through the T1 mode, contami-
nated with Rician noise at 9%, which is the highest noise 
level available in BrainWeb. The spatial resolution of the 
volumes that make up this DB is 181x217x181 voxels.

Figure 1 presents axial views of the information contained 
in selected images of the BrainWeb database.

Preprocessing
The images that make up the BrainWeb DB, contami-
nated at 9%, were smoothed by the anisotropic diffu-
sion filters7,8,9 and Gaussian filters10,11,12,13. Since each of 
the mentioned filters depends on their associated param-
eters, the application of a process of intonation of such 
parameters is required. To do this, we experimented with 
selected parameters from a set of arbitrary ranges9. The 
optimal parameters for each filter were obtained once the 
validation process was completed.

Gaussian Filter
The Gaussian filter has been used, traditionally, to elim-
inate noise in images. This filter can be modeled using 
equation 2.

                   (2)

Where in the expression, 0 ≤ i, j, k ≤ (n-1), n is the size 
of the observation window or Gaussian kernel; while σi, 
σj and σk represent the standard deviation of each spatial 
dimension. 

There is a compromise between the amount of noise that 
is eliminated by this filter and the blurring experienced by 
the image processed by this type of filter. In addition, this 
blur depends, strongly, on the standard deviation used in 
the 3D convolution mask of the Gaussian smoothing and 
the size of said Gaussian mask or kernel. Allowing for this, 
the standard deviation of the synthetic base subjected to 
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Figure 1. Axial views for the BrainWeb database: a) Ground 
truth or original image without Rician noise. b) Image with 
Rician noise at 9%.



189

Revista Latinoamericana de Hipertensión. Vol. 13 - Nº 4, 2018www.revhipertension.com

the filtering process was considered. Additionally, to avoid 
excessive blurring of the volume to be filtered, 3D masks 
were selected in sizes (3,3,3), (5,5,5), (7,7,7) and (9,9,9) 
voxels, that is, a total of 4 filtered versions of the DB con-
taminated with Rician noise were generated.

Anisotropic Diffusion Filter, based on the gradient.
Diffusion filters and their discrete implementation, based 
on the approximation of partial derivatives by means of fi-
nite differences, were introduced in the image processing 
by Perona et al.8, with a view to smoothing the informa-
tion contained within the regions delimited by the edges 
of an image. Some anisotropic diffusion filters, based on 
the gradient of the image, can be modeled mathemati-
cally by equation 3.

Where: ∇I(x, t) is the gradient of the image in the voxel 
x during time t and is the partial derivative of I(x, t) with 
respect to time and c(x; t) is given by equation 4.

Where k is the conductivity parameter.
As mentioned above in the equations linked to this type of 
filter, the anisotropic diffusion is based on an edge detec-
tor to guide the diffusion process. Normally, these equa-
tions are solved numerically using finite differences and 
by means of an explicit scheme that allows to soften the 
image in each increment of time, in an iterative way.

However, in the presence of noisy contours, diffusion fil-
ters have a tendency to degrade the edges of the images 
they process in proportion to the number of iterations. For 
this reason, the number of iterations (Iter) considered was 
1, 3, 5 and 7. This range of iterations includes relatively 
low values which determine that the referred degradation 
is not excessive.

On the other hand, the parameter k was varied from 0.1 
to 1.1 with a step size of 0.2. For the selection of these val-
ues, the work developed in7 was considered. Taking into 
account the combination of values selected for Iter and 
k, 24 versions were obtained anisotropically smoothed by 
the synthetic base processed.

Validation
In order to determine which of the filters exhibits a better 
performance in the presence of Rician noise present in 
the BrainWeb database, the so-called signal-to-noise ra-
tio (PSNR) index14,15 was used. One of the features of the 
PSNR is that it allows the evaluation of the quality of an 
image after being subjected to a filtering process. Thus, 
the higher the PSNR, the better the restoration quality of 
the filtered image. 

The PSNR was calculated using equation 515.

Where: GLMax is the maximum gray level present in the 
processed images, RMSE is the square root of the esti-
mated mean square error between the ground truth and 
the filtered volume.

Optimal Parameters
For the anisotropic diffusion filter, the parameters that 
generated the highest PSNR were: a) Number of Iterations: 
3. b) Conductivity: 0.5; while for the Gaussian filter the size 
of the optimal 3D neighborhood was (3,3,3) voxels. 

Qualitative Results
The selected volume of the BrainWeb base contaminated 
with Rician noise was filtered, independently, using both 
the techniques of anisotropic and Gaussian filtering. Be-
cause this volume is heavily contaminated, it is possible to 
visualize easily the Rician noise in any of the axial, coronal 
or sagittal cuts.

For this reason, only one of them was chosen to present 
the information related to this type of noise. Thus, figure 
2 allows the comparison of the axial view of the polluted 
volume with the smoothed versions, generated by each of 
the said filters.

  

A visual analysis of these images shows that both the 
anisotropic filter and the Gaussian smoothing manage to 
restore, to a large extent, the contaminated image. How-
ever, the qualitative analysis of these figures does not al-
low to establish, without ambiguity, which of the filters 
exhibits the best behavior; therefore, quantitative results 
obtained from the calculation of the PSNR are presented 
which will indicate, precisely, which of the filters delivers 
the best performance.

Quantitative Results
The previous qualitative assessment is supported by the 
data presented in table 1, obtained when calculating the 
PSNR index for synthetic bases contaminated with Rician 
noise. This table also shows the computation time used by 
each filter when processing the selected DB.

Table 1. Performance of the filters with respect to Rician 
noise, using the PSNR and the computation time required 
during its application.

Filter PSNR Computation Time (Seconds)
Anisotropic 23.72 91.09
Gaussian 23.56 4.56
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Figure 2. a) Image with Rician noise. b) Anisotropic smooth-
ing. c) Gaussian Filtering. 
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If the filter-noise ratio is analyzed considering the PSNR 
values obtained, it can be affirmed that the anisotropic 
filter obtained the highest value of PSNR, which indicates 
that it can restore, with a better effectiveness, volumes 
contaminated with Rician noise. 

This may be due, in part, to the fact that this filter uses a 
scheme based on an edge detector to smooth the image 
as many times as indicated by the number of iterations, 
which can be a potential advantage, from the perspec-
tive of effectiveness, against the non-iterative scheme on 
which the Gaussian smoothing is based. 

Yet, as reported in the literature and can be seen in Table 
1, this effectiveness is achieved through higher computa-
tion times than those employed by other smoothing tech-
niques. Additionally, the Gaussian smoothing also has a 
performance comparable to that of the anisotropic filter. 
According to what is reported in7, Rician noise is strongly 
linked to Gaussian noise, which partly explains the good per-
formance of the Gaussian filter in the face of Rician noise.

In this context, it is important to point out that, according 
to the information presented in table 1, the Gaussian filter 
can perform the smoothing process more quickly than the 
anisotropic filter; so, in those cases in which the computa-
tional cost of the filter favors the Gaussian filter, it can be 
a good alternative.

n the context of medical images, strictly speaking, it 
is necessary to develop an intonation process linked 
to the obtaining of optimal parameters that govern 

the operation of the filters used in computational process-
ing. This is because it is impossible to know, a priori, the 
set of parameters that guarantee the best overall perfor-
mance of the filters when dealing with the problem of 
noise of any nature and, particularly, Rician noise.

Taking only the PSNR as a reference, there is no doubt that 
the anisotropic filter exhibits the best performance. The 
results indicate that the iterative approach complemented 
with the contour detector on which the anisotropic filter 
is based turns out to be appropriate when it is intended 
to minimize the undesirable effects of Rician noise. In fact, 
according to the values of the optimal parameters for this 
filter, it is observed that more than one iteration and a low 
conductance value were required, so that this filter will 
generate the filtered version with higher PSNR.

If only the computation time is considered as a reference, 
the Gaussian filter is much more efficient than the aniso-
tropic filter implemented. This is a direct consequence of 
the iterative approach, of this last filter, requiring more 
computer resources than the simple scheme on which a 
Gauss filter is based that applies a direct convolution of 
the coefficients of its kernel with the gray levels of the 

image to soften.

In the context of medical images, it has been demon-
strated that the Gauss filter presents excellent attributes 
and should be one of the main computational smoothing 
techniques to be considered when facing the problem of 
Rican noise, the predominant type in both synthetic and 
real brain MRI images.

According to the results, the choice of the standard devia-
tion of the contaminated synthetic volume as the stan-
dard deviation of the Gaussian filter constitutes a good 
criterion to fix this parameter. As already noted, the stan-
dard deviation has a decisive influence on the quality of 
Gaussian filtering.
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