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n this work an adaptation of the Cross Industry 
Standard Process for Data Mining (CRISP-DM) meth-
odology, in the context of digital medical image 

processing is proposed. Specifically, synthetic images re-
ported in the literature are used as numerical phantoms. 
Construction of the synthetic images was inspired by a de-
tailed analysis of some of the imperfections found in the 
real multilayer cardiac computed tomography images. Of 
all the imperfections considered, only Poisson noise was 
selected and incorporated into a synthetic database. An 
example is presented in which images contaminated with 
Poisson noise are processed and then subject to two clas-
sical digital smoothing techniques, identified as Gaussian 
filter and anisotropic diffusion filter. Additionally, the peak 
of the signal-to-noise ratio (PSNR) is considered as a met-
ric to analyze the performance of these filters.

Keywords—CRISP-DM Methodology, Synthetic cardiac 
images, Computerized tomography, Noise, Artifacts

ccording to Moine1the CRISP-DM 
methodology was developed in the 
year 2000 by a group of companies, 

including SPSS, NCR and Daimler Chrysler,. It is based on 
the phases shown in figure 1.
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Procesamiento digital de imágenes médicas: aplicación a bases de datos 
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Figure 1. Scheme that links the phases of the CRISP_DM 
methodology. (Taken from Moine1).
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Moyne asserts that according to a study published in 
20072, this CRISP-DM is the most used reference method-
ology in the development of data mining projects,

It is important to note that the adaptation and develop-
ment of the phases shown in figure 1 in the context of 
digital processing of medical images is embodied in the 
various sections of this paper.

Phase 1. Problem understanding: Technical aspects and 
medical context of the problem.

The advent of diverse imaging modalities and their incor-
poration into the clinical routine, opens a world of possibili-
ties in the areas of diagnosis, treatment and monitoring of 
diseases that affect the normal activities of human beings.

In the medical context, useful information is routinely ex-
tracted from images acquired by various imaging modali-
ties such as Ultrasound Scanner (US), Magnetic Resonance 
Imaging (MRI), conventional Computed Tomography 
(CT), Multi-Slice Computed Tomography (MSCT), Posi-
tron Emission Tomography (PET), Single Photon Emission 
Computed Tomography (SPECT), Electron microscopy, and 
Endoscopy, among others. Usually, medical specialists fo-
cus their attention on a particular scene, organ, object or 
region in an image and resort to their experience to estab-
lish a diagnosis3.

Often, these specialists must develop a process of delin-
eation of the organ under examination (manual segmen-
tation) in order to obtain parameters of clinical interest 
that will support their diagnosis. During this development 
of manual segmentation, they must process a significant 
number of layers or two-dimensional images, which are 
organized and systematically grouped together to make 
up the structure of the organ subject to analysis.

Formally, image segmentation is a technique of digital 
image processing that allows users to obtain an accurate 
description of the shape of objects present in a scene. But 
segmentation is also the partition of an image in many 
non-overlapping regions4. After applying the segmenta-
tion process, it is possible to generate as many indepen-
dent regions as objects in the considered image.

In addition, it is important to highlight that medical image 
segmentation constitutes an open problem since each mo-
dality of imaging generates enormous amounts of infor-
mation. Typically, a segmentation image contains a series 
of imperfections that can be caused by multiple factors, 
such as noise, artifacts, non-homogeneity of the tissues 
that constitute the various organs of the human body.

As a consequence, all the imaging modalities generate 
images with multiple imperfections. This constitutes the 
main obstacle to overcome when trying to identify or 
characterize the pathologies linked to any organ of the 
human body.

hase 2. Data understanding: Identification of 
imperfections of the databases considered.

Once the access to the databases is granted, it is necessary 
to develop a detailed analysis of the images that embody 
the anatomical structure of interest.

The aforementioned analysis is crucial because it allows 
the identification of specific problems or imperfections in 
the image not associated with the anatomical structure of 
interest to the researcher. Thus, for example, it is possible 
establish without ambiguity: a) The type of noise (white, 
Gaussian, Rician, and so forth), b) Specific artifacts that af-
fect the image quality (staircase, partial volume, star, dark 
band, ring, among others), c) Homogeneity or not of the 
information, and d) Problems related to the contrast of 
intensity between anatomical structures.

This phase of the methodology, called data understand-
ing, will be illustrated by an example in which the process 
is used to generate the numerical phantoms. This type 
of phantoms can be considered as an artificial model in 
which the structure and/or characteristics of a real model 
are incorporated3. Particularly, Poisson noise present in 
cardiac MSCT images will be incorporated into a synthetic 
database (DB), called numerical phantoms.

Construction of numerical phantoms
or synthetic databases
With the aim of constructing the synthetic databases, all 
the images from a cardiac MSCT real database are select-
ed, in which both the endocardium and the left ventricular 
wall (LV) are present and an analysis of their outstanding 
characteristics is made. The information obtained from the 
aforementioned analysis is used to construct two numerical 
phantoms called: DB original and DB Poisson. The construc-
tion process of each mentioned DB is described below.

A. Original DB
To generate this database, the endocardium and LV wall 
are simulated by an internal cone and an external cone, 
respectively. In this sense, both cones are merged into a 
single volumetric image (3D), unsigned integer type, of 12 
bits and with a spatial resolution of 256×256×50 voxels. 
This means that the original DB is made up of 50 images, 
each of which has a spatial resolution of 256×256 pixels. 
The value 256 is equivalent to 50% of the size of a typi-
cal cardiac tomography layer; while the value 50 corre-
sponds, approximately, to 20% of the number of layers of 
the actual data analyzed.

As 50 layers are required, 50 circular layers for both the 
internal and external cones must be constructed, thus, 
100 circular layers of variable radius are generated. The 
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common center of all these layers is located at the coor-
dinates (128,128) pixels. For the 50 circular layers of the 
internal cone, the radius considers values between 11 and 
60 pixels with a unit step size; while and for the 50 layers 
of the external cone, the same step size is used, but the 
radius range is between 51 and 100 pixels. The ordered 
grouping of these layers allows the construction of the 
mentioned cones.

The intensity value of the circular layers of the internal 
cone was 1500. This value corresponds to the average 
of the voxel intensities of the myocardium. On the other 
hand, the intensity value of the external cone is fixed at 
1000. This value is generated by averaging the gray levels 
of the voxels of the LV wall of the real cardiac DB.

The gray level of the internal cone mantle is matched to 
the average of the values 1500 and 1000; whereas, the 
intensity or gray level of the outer mantle is obtained by 
averaging the values 1000 and 0 (the value 0 corresponds 
to the intensity of the background of each image), that is, 
the outer mantle has a gray level of 500.

To enter into the cones the information about the intensi-
ties or levels of gray mentioned, each of the generated cir-
cular layers is processed with a filling algorithm. Thus, the 
original DB is obtained by means of the arithmetic sum of 
the external cone and an auxiliary cone that is constructed 
with the purpose of preserving the design parameters of 
the internal cone. Table 1 presents the parameters corre-
sponding to the constructed cones.

Table 1. Parameters of the cones used to simulate the fea-
tures of the LV.

Circular layer 
intensity Mantle intensity

Auxiliary 
Cone 500 750

External Cone 1000 500

Internal Cone 1500 1250

Additionally, figure 2 shows the orthogonal views of im-
ages that belong to the original DB created.

B. Poisson DB

To construct the Poisson DB, the original DB is contami-
nated with Poisson noise using the algorithm proposed 
by Devroye5. Figure 3 presents images that reveal the or-
thogonal views of this database.

 
Phase 3. Data preparing: Fundamentals of some filtering 
techniques for noise reduction.

Based on the identification of the problems and imperfec-
tions associated with the medical images which make up 
the databases, a set of procedures is established to improve 
the quality of the information of the data considered.

In this sense, a careful and detailed analysis is carried out of 
the digital image processing techniques that according to 
the specialized literature, can exhibit the best performance 
addressing each of the identified problems. Thus, for the 
sole purpose of illustrating the Poisson noise minimization 
process present in the synthetic databases, the filtering 
techniques considered in this work are described below.

The process of image filtering consists of the applica-
tion of algorithms which are usually called filters, which 
are characterized by modifying to a certain degree the 
characteristics or attributes of an input image in order 
to minimize the possible imperfections present in it6. In 
addition, filters operate on images, in the frequency and 
spatial domains, in order to: a) enhance some type of de-
sired information which may be linked, for example, with 
a structure or object of interest; b) minimize or suppress 
unwanted information which may correspond to artifacts, 
noise, background or other different objects than the ob-
ject of interest7.

After the filter is applied, an output image is generated in 
which some attributes present in the input image may ap-
pear smoothed or enhanced. Accordingly, in a preliminary 
way, filtering techniques can be classified as filtering tech-
niques for the removal of unwanted information and fil-
tering techniques for the enhancement of information of 
interest. Additionally, the most common filters for remov-
ing unwanted information (called low-pass filters) apply 
smoothing operations, oriented mainly to the noise elimi-
nation present in the considered image. Among them are 
Gaussian and anisotropic diffusion filters. Such filters are 
presented below.

·	 Filter based on anisotropic diffusion
The anisotropic diffusion filters and its discrete implemen-
tation based on the approximation of partial derivatives, 
through finite differences, were introduced in image pro-
cessing by Perona and Malik8. The purpose of applying 
such filters is to soften the information contained within 
the regions delimited by the edges of the objects present 
in an image. Anisotropic diffusion filters9 can be modeled 
mathematically by equation 1.

Figure 2. Original DB. (a) 3D view. (b) Axial view. 
(c) Coronal view.

Figure 3. Poisson DB. (a) 3D view. (b) Axial view. 
(c) Coronal view.
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           (1)

Where ∇I(x, t) is the gradient of the image in the voxel x 
during the iteration (time) t, ∂I(x, t)/∂t is the partial deriva-
tive of I(x, t), and c(x, t) is the conductivity function given 
by equation 2.

             (2)

Where k is the conductivity parameter.

As shown in equations 1 and 2, the anisotropic filters use 
an edge detector that guides the diffusion process. Nor-
mally, such equations are solved numerically using finite 
differences, by means of an explicit scheme that allows 
for the softening of the image, in an iterative way, in each 
increment of time. In that sense, time controls the number 
of iterations.

·	 Gaussian filter
The Gaussian filter is a linear spatial technique that has 
been used classically to minimize noise present in images. 
There is a connection between the amount of noise that is 
attenuated by the application of this filter and the blurring 
of the image. This type of filter uses a discrete Gaussian 
distribution which can be expressed by means of a mask 
or Gaussian kernel, of arbitrary size10. For softening, for 
example, a 3D image, the scalars in the aforementioned 
kernel can be obtained according to equation 3.

  (3)                        

Where 0 ≤ i, j, k ≤ (n-1), n is the size of the Gaussian ker-
nel, and σi, σj and σk are the standard deviations for each 
spatial dimension.

In practice, Gaussian filtering is implemented by convolv-
ing the original image with the referred Gaussian kernel. 
The parameters of this filter are: the standard deviation 
of each of the spatial dimensions and the radius (r) that 
defines the mask size (n), given by equation 4 where r is 
an arbitrary scalar.

              (4)                                    

Phase 4. Modeling: Presentation of the models to filter the 
Poisson DBS.

After reviewing the filtering techniques for noise removal, 
we proceed to design and implement a flexible model that 
allows the systematic minimization of the effect of this im-
perfection in the DBS. One of the desirable characteristics 
of the model is that it should be possible to represent it by 
means of a flow or block diagram that allows identifying 
the elements that compose it.

Usually, the model allows the implementation of a digital 
image processing strategy based on:

a) Filtering techniques based on filters: low-pass, band-
pass, reject-band and/or high-pass.

b) Algorithms linked to the definition of regions of inter-
est based on many classic operators (morphological, 
algebraic and/or geometric operators) as emerging 
(operators based on machine learning).

c) Segmentation techniques that consider methods, vari-
ational, grouping and/or hybrid.

From these sections mentioned above, as an example, only 
the part of literal a) corresponding to the consideration of 
low-pass filters or smoother filters will be implemented, In 
this sense, when carrying out filtering processes, usually, 
attention is focused on the type of noise that the images 
to be processed have. In response to this, synthetic bases 
contaminated with Poisson noise are considered.

In view of the above, by means of figure 4, the block dia-
gram corresponding to the anisotropic smoothing tech-
nique is presented; while figure 5 illustrates the scheme 
relating to the application of the Gaussian filter.

In view of the above, by means of figure 4, the block dia-
gram corresponding to the anisotropic smoothing tech-
nique is presented; while figure 5 illustrates the scheme 
relating to the application of the Gaussian filter.

Figure 4. Pipeline for filtering the Poisson DB by 
anisotropic diffusion.

Figure 5. Pipeline for filtering the Poisson DB 
by Gaussian filtering.
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Phase 5. Evaluation: Parameters tuning
Once the model has been designed, it becomes necessary 
to execute the tests of boxes (white, gray and/or black) 
to make judgments about the performance, simulated or 
real, of the strategy that will finally allow the implementa-
tion of data mining. The mentioned tests must include 
the process of generation of the optimal parameters 
(tuning process), associated with each of the filtering 
techniques considered. In this sense, the parameters for 
the Gaussian and anisotropic filters are tuned to mini-
mize this type of noise.

Parameters linked to the Gaussian filter
There has to be a compromise between the noise that is 
removed by this filter and image deformation. This de-
formation strongly depends on the standard deviation 
used in the convolution mask of Gaussian smoothing. In 
response to this, the standard deviation of the synthetic 
base subjected to filtering was considered. Additionally, 
in order not to produce an excessive deformation of the 
volume to be filtered, 3D neighborhoods of sizes (3,3,3), 
(5,5,5), (7,7,7) and (9,9,9) voxels were selected. The con-
sideration of these neighborhoods allowed for the gen-
eration of 3 Gaussian filtered versions of the Poisson DB.

Parameters linked to the anisotropic diffusion filter
In the presence of noisy contours, diffusion filters have a 
tendency to degrade the edges of the images they pro-
cess in proportion to the number of iterations9. For this 
reason, the number of iterations must be chosen carefully, 
in such a way that the aforementioned degradation is not 
excessive3. The number of iterations (Iter) considered was 
1, 3, 5 and 7. This range of iterations includes relatively 
low values which determine that the mentioned degrada-
tion is within bounds. On the other hand, the parameter 
k varied from 0.1 to 1.1 with a step of 0.2. For the selec-
tion of these values, the work developed by Coupé et al.9 
was considered. Taking into account the combination of 
values selected for Iter and k, 24 anisotropically smoothed 
versions were obtained for each synthetic base processed.

Additionally, it is important to note that Poisson noise can 
be seen in any of the Poisson DB views: axial, coronal and 
sagittal. For this reason, only the axial view was chosen to 
visualize the filtering process. In this sense, through fig-
ure 6, the axial views of the Poisson DB and its filtered 
versions are presented after independent application of 
the anisotropic diffusion filter (figure 6b) and Gaussian 
smoothing (figure 6c) techniques.

Analyzing figure 6, it is possible to observe that the aniso-
tropic filter and Gaussian smoothing have reduced, to 
some degree, the Poisson noise impact on the considered 
DB. Moreover, if only qualitative information is available, 
it is very difficult to determine which of the techniques 
does the best job in minimizing that type of noise. For this 
reason, in order to establish which of the filters exhibits a 
better behavior with Poisson noise, quantitative informa-
tion provided by the calculation of the peak of the signal-
to-noise ratio (PSNR) is used.

One of the characteristics of the PSNR is that it allows us 
to establish the quality of an image after being submitted 
to a filtering process. The PSNR can be calculated using 
equation 5.

  (5)

Where RMSE is the square root of the estimated squared 
half error comparing the reference image (original DB) and 
the unfiltered image corresponding to the Poisson DB.

The results are shown in table 2, based on the PSNR. 

Table 2. Performance of the filters with Poisson noise con-
sidering the PSNR.

Filtering technique PSNR (dB)
Anisotropic diffusion 41.50

Gaussian smoothing 42.23

The values presented in table 2 show that, for the pro-
cessed database, the Gaussian filter generates the highest 
PSNR, followed by the anisotropic smoothing. This indi-
cates that Gaussian smoothing can be more effective for 
restoring images contaminated with Poisson noise, when 
compared to the other considered technique.

According to Lei and Sewchand11 and Lu et al.12, Poisso-
nian noise, recreated in synthetic images, can be approxi-
mated by a Gaussian distribution. This could be one of 
the reasons why the Gaussian filter exhibits better perfor-
mance than the other two filtering techniques considered 
in this section. 

Phase 6. Implementation: Computational infrastructure. 
After executing the evaluation phase, the last phase for 
the model implementation may be executed. In this last 
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Smoothed image with Gaussian Filtering.
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phase, considerations must be made relative to the type 
of software and computational infrastructure that will be 
used for the implementing the model.

In this sense, for the computational implementation of the 
tuned model, an object-oriented programming paradigm 
was used, that included the use of free software tools, such 
as: VTK13 and FLTK14 libraries. In addition to the integrat-
ed development environment called Visual Studio version 
10.0, to access C++15, which requires a commercial license.

n example of adaptation of a data 
mining methodology (CRISP_DM) to 
the context of medical images is pre-

sented. Specifically, in synthetic images constructed con-
sidering Poisson noise normally present in real databases 
of cardiac computed tomography.

The work shows the effectiveness of the anisotropic diffu-
sion filter and Gaussian smoothing to reduce the impact 
of Poisson noise on the quality of the synthetic images 
considered.

The quantitative results generated for the Gaussian filters 
and anisotropic diffusion, correspond to their optimal pa-
rameters as generated by intonation on the Poisson synthetic 
base, that is, those that gave the best values for the PSNR.

These results add force to the fact that anisotropic diffu-
sion filter and Gaussian smoothing have been used, classi-
cally, as general noise removal techniques. In the example 
developed, the Gaussian filter exhibited better perfor-
mance, reducing more Poisson noise that the anisotropic 
diffusion filter.
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