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Abstract. This paper aims to present an updated review of parallel algorithms for solving
square and rectangular single and double precision matrix linear systems using multi-core central
processing units and graphic processing units. A brief description of the methods for the solution
of linear systems based on operations, factorization and iterations was made. The methodology
implemented, in this article, is a documentary and it was based on the review of about 17
papers reported in the literature during the last five years (2016-2020). The disclosed findings
demonstrate the potential of parallelism to significantly decrease extreme learning machines
training times for problems with large amounts of data given the calculation of the Moore
Penrose pseudo inverse. The implementation of parallel algorithms in the calculation of the
pseudo-inverse will allow to contribute significantly in the applications of diversifying areas,
since it can accelerate the training time of the extreme learning machines with optimal results.

1. Introduction
The multilayer perceptron (MLP) [1] and support vector machines (SVM) [2] can be considered
the most widely used in machine learning context due to their great ability to generalize in
classification and regression problems. On the other hand, extreme learning machines (ELM)
have aroused great interest because they achieve similar levels of performance as MLP and SVM
but with substantially shorter training times. In ELM’s training algorithm, the hidden layer
weights and biases are set randomly and the output layer weights and biases are estimated
by solving overdetermined system of linear equations (SLE), typically using the Moore-Penrose
generalize inverse matrix [3].

Parallel programming is based on breaking a problem down into smaller, independent parts
or processes; the independent processes are executed simultaneously by multiple processors that
communicate with each other through memory, considering different approaches [4]. This allows
code to be executed faster (acceleration) [4] compared with CPU serial execution time.

Several works have now been reported in which efforts were made to implement ELM using
parallel techniques such as MapReduce and GPU implementation [5]. Subsequently, in [6] the
main drawbacks of ELMs are presented, such as the difficulty to determine the hidden layers
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structure, prediction of instability and unbalanced data distributions; likewise, in [7] a review
on monolayer (SLFN) and multilayer (ML-ELM) extreme learning machines, is developed.

The aim of this work is to present an updated review of parallel algorithms for the solution of
SLE, which can be applied for the computation of the Moore-Penrose generalized inverse matrix
during the ELM training.

2. Extreme learning machine foundations
This section presents the main foundations to define the type of neural network (NN) addressed
in this review.

2.1. Moore-Penrose generalized inverse matrix
The solution of an overdetermined SLE Ax = y, where A ∈ Rm×n with m > n, can be simplified
using the Moore-Penrose generalized inverse matrix A† ∈ Rn×m [8], which is unique and satisfies
all four conditions: AA†A = A, A†AA† = A†, A†A = (A†A)T , and AA† = (AA†)T .

2.2. Extreme learning machine
Let N be a training set {(xi, ti)|xi ∈ Rn, ti ∈ Rm} with i = 1, . . . , N . Equation (1) presents the
learning algorithm for SLFNs with an activating function g(s) : Rn → Rm and L hidden layer
neurons [9].

L∑
i=1

βig(wixj + bi) = tj , j = 1, . . . , N, (1)

where βi are the output weights, wi and bi are the ith weight and bias of the input layer,
respectively. The results of Equation (1) can be written as Hβ = T , where the matrix H is
called the hidden layer output matrix of the NN [10]. The ith column of H is the ith output
vector of the hidden neuron with respect to the input (x1, . . . , xN ). In [11] the steps to calculate
the output weights β = H†T are presented, where H† is the Moore-Penrose generalized inverse
matrix of H.

Several variants of ELM have been proposed in the literature with the aim of achieving better
results, such as ML-ELM [12]. In that sense, in [13] a ML-ELM architecture is presented using an
ELM-based AutoEncoders (AE) approach (ELM-AE). The ML-ELM stacks ELM-AE to create
a multilayer neural network [13].

3. Methodology
In this work, the comprehensive interpretive paradigm was used, employing the revision method
through the content analysis technique. For the review, articles related to the object of study
were selected and the relevant information was synthesized using a comparative technique,
allowing the identification and analysis of both the foundations of the methods for solving
systems of linear equations (MSSLE) and the formally reported antecedents.

For the analysis, the following methodological stages were developed: (i) Identification of the
theoretical foundations related to MSSLE in their classic and parallel versions, (ii) Addressing
the antecedents through critical review of units of analysis (papers and proceedings), in different
specialized databases such as Springer, Elsevier and IEEE Xplore, academic databases and high
impact journals, and (iii) classification of 17 documents according to the scope, year and context
of the research, from the 2016 to 2020.

In the search, the types of documents discriminated were classified as follows: 6 documentary
review papers, 17 articles that present proposals for models and strategies for the parallelization
of MSSLE (4 in conferences, 1 in symposium, 12 in specialized journals).
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4. Parallel methods for solving linear systems
This section briefly presents the methods based on operations, matrix factorization and iterative
for the solution of SLE. For each method, a review of the most recent works that implement
parallel algorithms is presented.

4.1. Methods based on operations
One of the main methods based on operations is Gaussian elimination (GE), which converts the
equation Ax = b into Ux = y, where U is a superior triangular matrix and y is a new vector
of values of equation [8]. Table 1 presents an overview of more recent articles on feature-based
parallel methods.

Table 1 presents an approach based on partitioning the matrices into blocks and the parallel
implementation of Gaussian elimination. For this, it will be used in shared memory architectures
and physical infrastructure to raise the quality of cryptographic systems through the application-
specific integrated circuit. Likewise, a scheme of Multilevel hybrid parallel calculation for
magnetotelluric occam inversion based on MPI + OpenMP + CUDA libraries, which proved
to be feasible and efficient. It was evident that in most of the references, the scalability of the
multicore CPU system architecture exhibits better performance than GPUs.

Table 1. Brief description about papers related to paralelized methods based on operations.

References Applications Data Parallel architecture Results

Yi H B et al.
2018 [14]

Gaussian Elimi-
nation in finite
fields

In GF (28) takes 739
clock cycles and around
2000 gate

TSMC-0.18µm stan-
dard cell CMOS
ASIC

Design is suitable for
MQ cryptographic sys-
tem implementations

Pan V Y,
Zhao L
2017 [15]

Gaussian elimi-
nation with no
pivoting

N×N matrix with N =
256 to N = 4096

Intel Core 2 2.50
GHz processor and
4G memory running
Windows 7

Its efficiency is con-
firmed with numerical
tests

Abouelfarag
A A et al.
2016 [16]

Multicore archi-
tecture and GPU
architecture us-
ing GE problem

N×N matrix with N =
512 to N = 8192

Two Intel(R) Xeon(R)
CPU E5-2660 v3 @
2.60 GHz. GeForce
8800 Ultra

Multicore perfor-
mance outperforms
GPU when sockets are
increased

Liu Y et al.
2016 [17]

Parallel Gaus-
sian Elimination

Parameters of In-
version Model
Nr = 21, 41, Nm =
889, 1549, NE(y × z) =
103 × 35, 193 × 35
nfre= 20, 36

An Intel Core i5-3470
CPU and an GTX 680
GPU GDDR5 device
memory

In the experiments
carried out, the accel-
eration ratio is up to
23.49

Dumas J G et
al. 2016 [18]

Parallelization of
subcubic GE on
shared memory
architectures

N×N matrix with N =
2000 to N = 30000

32 cores Intel Xeon E5-
4620 2.2 GHz with L3
cache

Building blocks com-
bined in recursive
mosaic algorithm
give high computing
efficiency

4.2. Methods based on matrix factorization
Among the effective algorithms for calculating the pseudoinverse matrix are the methods based
on singular value decomposition (SVD), Cholesky factorization, QR factorization, tensor product
and the conjugate process of Gram-Schmidt [3]. The SVD of a matrix H ∈ Rm×n is defined
by H = UΣV T , where U and V are unit matrices of size m × m and n × n respectively and
Σ is a diagonal matrix of size m × n with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 [8]. The
pseudoinverse of H is given by H† = V Σ†UT [3, 8].
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On the other hand, the Cholesky factorization is admitted for all symmetric and positive
definite A ∈ Rn×n matrix, for which there is a superior triangular matrix L of dimensions
n × n such that A = LLT [8]. In [3] the algorithm for calculating the pseudoinverse using
Cholesky factorization is presented. Regarding the QR factorization, if A ∈ Rm×n has linearly
independent columns, then A can be factored in the form A = QR, where Q is a matrix with
orthonormal columns and R a superior triangular matrix [8]. For the pseudoinverse calculation,
in [3,19] algorithms implementing QR factorization are presented. Table 2 presents an overview
of more recent articles on parallel methods based on matrix factorization.

The parallel matrix factoring algorithms for heterogeneous architectures connecting
processors with different characteristics developed in Table 2 present notable advantages
compared to traditional methods. These methods achieve high performance, adequate precision
and scalability in the solution of large symmetric matrix data using MPI and CUDA.

Table 2. Analysis about parallel factorization methods using papers reported in literature.

References Applications Data Parallel architecture Results

Lu Y et al.
2020 [20]

SVD factoriza-
tion and video
processing

M×N double precision
matrix with M = 10
and N = 5 × 101 to
N = 5×105, and a high
definition traffic video

Two Intel 8-core Xeon
Silver 4110 CPUs and
two Tesla V100 (Volta)
GPUs

Some methods acceler-
ation up to 5.2 times

Tomás A et
al. 2019 [21]

SVD factoriza-
tion

N × N single and
double precision matrix
from N = 5 × 103 to
N = 3 × 104

Tesla P100 with In-
tel 8+8-core Xeon E5-
2620 v4, GeForce Ti-
tan X with Intel 4-
core Core i7-3770K,
and Tesla K20c with
Intel 6-core i7-3930K

Significantly decreases
parallel execution time

Wu R
2019 [22]

Cholesky Factor-
ization

N ×N double precision
matrix with N = 10000
and N = 20000

Two 8-core Intel Xeon
E5-2620 v4 CPUs

Parallel execution
times progressively
decrease

Wu R
2018 [23]

Cholesky Factor-
ization

N ×N double precision
matrix from 3N to 7N
(N = 16384) in dif-
ferent system configu-
rations

Two 8-core Intel Xeon
E5-2640 CPUs and
eight Tesla M2090
GPUs

Good performance on
scalability, communi-
cation cost, and load
balancing

Zhang S et al.
2020 [19]

QR factor-
izatión on neural
engines

Large-scale rectangular
matrix of different sizes

Tesla V100 (PCIe ver-
sion) GPU

Cost efficiency using
neural motors to accel-
erate linear algebra op-
erations

Tapia-
Romero M et
al. 2020 [24]

QR factorization

N × N single and
double precision matrix
from 5N to 20N (N =
1×103) in different sys-
tem configurations

Two 6-core Intel
Xeon X5675, and
two Tesla K20X, one
Tesla C2070, and one
GeForce GTX 460

The combination of
MPI and CUDA is fea-
sible

4.3. Iterative methods
Iterative methods are used in large spaced systems and are efficient in both storage and
computational time; the most used iterative methods are: Jacobi, Gauss-Seidel and successive
over relaxation (SOR). An iterative method by which the SLE Ax = b is solved begins with an
initial approximation x(0) to the solution x and generates a sequence of vectors {x(k)}∞k=0 that
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converges to x. Iterative methods bring along with them a process that converts the system
Ax = b into another equivalent of the form x = Tx+c for some fixed matrix T and a vector c [8].
After selecting the initial vector x(0), the sequence of the vectors of the approximate solution
is generated by calculating x(k) = Tx(k−1) + c, for k = 1, 2, 3, ..., n. To solve a system Ax = b,
where A ∈ Rn×n and x, b ∈ Rn, the Jacobi method performs calculations using matrix notation
x(k) = D−1(L+U)x(k−1) +D−1b where, A = D− (L+U) is a division of A into its diagonal D,
upper triangular L and lower triangular U , respectively [8].

On the other hand, the Gauss-Seidel [8] method can be implemented using a single iteration
vector, which is important for systems of large linear equations. The Gauss-Seidel method, in
which there is no reason to conserve x(k) to calculate complete x(k+1), is called a SOR method [8].
These methods have a high degree of parallelism. Table 3 below presents a summary of the most
recent articles on parallel algorithms based on iterative methods.

The references reported in Table 3 show that parallelized iterative methods allow to solve
structured problems in GPU units efficiently. Some of these methods include OpenMP dynamic
programming and MPI communication which have improved execution time compared to other
methods. Additionally, as the GPU is a highly parallel structure with thousands of cores, the
GPU performance for iterative methods exhibited more efficient performance than the CPU.

Table 3. Summary related to paralelized methods based on iterative methods.

References Applications Data Parallel architecture Results

Islam M S et
al. 2020 [25]

Jacobi method.
Structured prob-
lems

SLE that arise from
the discretization of the
Poisson equation in 1D
and 2D

GPU parallel deploy-
ment using shared
memory

Optimal performance
of the shared memory
algorithm

Yang X et al.
2018 [26]

Jacobi Stencil
Algorithm

Information analysis
center of the San-
jiangyuan region as a
test bed

Cluster with 48 com-
pute nodes, and each
node has two CPUs
and 24 cores

The execution time
is significantly reduced
compared to the ver-
sion of a singlethread

Aslam M et
al. 2020 [27]

Nine Variants
of the Jacobi
Method

Sparse matrices with
double precision arith-
metic

Intel Core-i7 8750h
CPU and two NVIDIA
GPUs

GPUs achieve an ac-
celeration of at least 46
times with respect to
CPUs

Naik T U et
al. 2017 [28]

Gauss-Seidel
method. Sym-
metric matrices

Size matrices:
500× 500, 2000× 2000,
3000 × 3000,
4000×4000, 5000×5000

CUDA on GPU
GPU performance is
faster than CPU

Wu Z et al.
2017 [29]

Gauss-Seidel
method. Sig-
nal detection
algorithm

Massive 128× 8 MIMO
system on a Xilinx
Virtex-7 XC7VX690T
FPGA

PGS detector for
a massive 128 × 8
MIMO system on a
Xilinx Virtex-7 FPGA
XC7VX690T

PGS provides higher
performance than con-
ventional GS detector

Huang G H et
al. 2020 [30]

SOR method.
Linear equations
of discontinuous
deformation
analysis

Equations in 3D
spheres. Application
example with 10,000
spheres and 200,000
calculation steps

OpenMP-based serial
and parallel comput-
ing performed on a 16-
core PC

SOR is approximately
six times faster than
other methods for se-
rial computing

5. Results
The ELM is a neural model that is implemented in many applications with a fast learning speed
and good generalizability. Currently, the high volume of data presents in matrices with large
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dimensions reuires learning time increase for calculating H pseudoinverse. One of the most
viable options to counteract this increase is to parallelize the algorithms of the pseudoinverse
calculation with multicore CPUs and GPUs. Parallelization focuses on solving overdetermined
SLE with methods based on operations, factorizations and iterations.

The review of the three methods in the literature has shown a significant decrease in parallel
times implementing different architectures in distinctive ways. To conduct the experiments, the
authors have used a variety of data such as images and videos. In the literature, it was reported
papers with square and rectangular single and double precision matrix, with sizes ranging from
10 to 5 × 105 rows and/or columns, having very good performance with large matrices. Some
of the limitations that parallel models present have to do with hardware memory.

6. Conclusions
An updated review of parallel algorithms for solving SLE has been presented in this paper.
Solving SLE is a complex problem since, when working with large volumes of data, the size of
an array associated with the system increases, which in turn increases the computation time
of the pseudo-inverse. It is important to find an optimal solution, using high-performance
computing. That is why the methods based on operations, matrix factorizations and iterations
were addressed in their parallel versions. The parallel method based on Gaussian elimination
showed optimal performance when using multicore CPU architecture compared to GPU for
solving large-dimensional SLE.

On the other hand, it is evidenced that parallel algorithms significantly accelerate the
factoring process of a large matrix, and at the same time have good overall performance
(scalability, load balancing, and communication cost). The iterative methods addressed were
Jacobi, Gauss-Seidel and SOR. It was concluded that these methods are suitable for parallel
architectures since they allow to solve problems of SLE in GPU units efficiently. These methods
outperform performance of other methods reported in the literature.
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