Mostrar el registro sencillo del ítem

dc.contributor.authorVera, M
dc.contributor.authorFlórez, M
dc.contributor.authorSalazar-Torres, J
dc.contributor.authorHuérfano, Y
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorValbuena, O
dc.contributor.authorVera, M I
dc.contributor.authorAranguen, M
dc.description.abstractThe series of payments made in equal intervals of time is known, in the world of financial mathematics, as an annuity. An anticipated annuity is one whose periodic payment expires at the beginning of the established payment interval. The non-analytical equation that allows us to calculate the interest rate, linked to the anticipated annuity, can be solved using several numerical methods, in particular, the numerical method called Newton-Rhapson. The main problem with this method is its initialization, which requires of one starting point that, usually, is estimated without any scientific background or using random or arbitraries mechanisms. In order to address this problem, in this paper, we establish as main objective to demonstrate that the Newton-Rhapson method can be initialized using only the data, of an anticipated annuity, identified as capital, income and payment intervals without the need to use the initialization strategies, reported in the literature. Through this article, a strategy is presented that allow us to calculate the value of the AA interest rate using the MNR. The value of the error generated for the problematic considered in order to assess the quality of the work performed, is a clear indicator of the good performance of the proposed strategy. This strategy for obtaining the starting point of the aforementioned numerical method is useful in the financial mathematical context, for example, when is necessary the interest rate calculation.eng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1414 (2019)eng
dc.titleNewton-Raphson method initialization for non-analytical equations solution linked to anticipated annuitieseng
dcterms.referencesPortus G 1997 Matemáticas financieras (Bogotá: McGraw Hill)spa
dcterms.referencesBaca G 2010 Fundamentos de ingeniería económica (México: Mc Graw-Hill)spa
dcterms.referencesMeza J 2017 Matemáticas financieras aplicadas (Bogotá: Ecoe Ediciones)spa
dcterms.referencesBurden R and Faires D 2010 Numerical analysis (Mexico: Cenage Learning)eng
dcterms.referencesMena R 2017 Introducción al estudio de las matemáticas financieras (Barranquilla: Ediciones Universidad Simón Bolívar)spa
dcterms.referencesGonzález G 1998 Matemática financiera: Intereses y anualidades ciertas (México: McGrawHill)spa
dcterms.referencesCánovas R 2004 Matemáticas financieras, fundamentos y aplicaciones (México: Ediciones Trillas)spa
dcterms.referencesCano A 2013 Matemáticas financieras aplicada a las ciencias económicas, administrativas y contables (Bogotá: Ediciones de la U)spa
dcterms.referencesSmola A 1998 Learning with kernels (Germany: Technische Universität Berlin)eng
dcterms.referencesGunn S 1998 Support vector machines for classification and regression (Southampton: Southampton University)eng
dcterms.referencesSuykens J, Gestel T and Brabanter J 2002 Least squares support vector machines Neural Processing Letters 9(3) 293eng
dcterms.referencesHamming R 1973 Numerical methods for scientist and engineers (New York: Dover Publications)eng

Ficheros en el ítem


Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional