Mostrar el registro sencillo del ítem

dc.contributor.authorMedelo Ballesteros, Hebert
dc.contributor.authorEspinosa-Castro, Jhon-Franklin
dc.contributor.authorRodríguez, Johel E.
dc.contributor.authorPazmiño Calero, Alejandra
dc.contributor.authorPalacios Serrano, Susana
dc.contributor.authorPérez Granja, Ana
dc.contributor.authorRuiz Chávez, Paul
dc.contributor.authorAñez, Roberto
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2020-01-28T15:44:07Z
dc.date.available2020-01-28T15:44:07Z
dc.date.issued2019
dc.identifier.issn26107988
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4562
dc.description.abstractEl glioblastoma es el tumor cerebral primario maligno más común, su incidencia continúa aumentando en los adultos mayores debido a que este grupo está creciendo más rápido que cualquier otro segmento de la población. La imagenología por resonancia magnética se ha convertido en una herramienta esencial para la adquisición de imágenes en tiempo real del cerebro y por lo tanto para la valoración y la estadificación de los tumores cerebrales. La evaluación no invasiva, basada en imágenes por resonancia magnética, de la malignidad del tumor y el estado molecular ofrece la oportunidad de poder predecir el pronóstico y seleccionar pacientes que puedan ser candidatos para terapias individualizadas dirigidas, lo que proporciona herramientas más sensibles para el seguimiento del cáncer.spa
dc.description.abstractThe most common malignant primary brain tumor is the glioblastoma; its incidence is increasing in older adults faster than any other population segment. Magnetic resonance imaging has become an essential tool for the acquisition of real-time brain images and therefore, for the assessment of the staging of brain tumors. Noninvasive evaluation based on magnetic resonance imaging of tumor malignancy and molecular status offers the opportunity to predict prognosis and furthermore it allows us to select patients who may be candidates for targeted individualized therapies, which provides more sensitive tools for cancer follow-up.eng
dc.format.mimetypepdfspa
dc.language.isospa
dc.publisherSociedad Venezolana de Farmacología y Terapéuticaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceArchivos Venezolanos de Farmacología y Terapéutica AVFTspa
dc.sourceVol 38, No. 3 (2019)spa
dc.source.urihttp://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/16826
dc.subjectGlioblastomaspa
dc.subjectTumores cerebralesspa
dc.subjectImagenologíaspa
dc.subjectResonancia magnéticaspa
dc.titleValoración mediante resonancia magnética del Glioblastomaspa
dc.title.alternativeMagnetic resonance assessment of glioblastomaspa
dc.typearticlespa
dcterms.referencesAtlas, S.W. (2009). Magnetic Resonance Imaging of the Brain and Spine, 4ta edición. Vol. 1, Lippincott Williams & Wilkins.eng
dcterms.referencesBottomley, P.A., Hardy, C.J., Argersinger, R.E. y Allen‐Moore, G. (1987). A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic? Medical Physics, 14(1): 1-37.eng
dcterms.referencesBulik, M., Kazda, T., Slampa, P., y Jancalek, R. (2015). The Diagnostic Ability of Follow-Up Imaging Biomarkers after Treatment of Glioblastoma in the Temozolomide Era: Implications from Proton MR Figura 1. Vista axial de MRI de un pacientes con Glioblastoma. 386 Spectroscopy and Apparent Diffusion Coefficient Mapping. BioMed Research International, 2015:641023.eng
dcterms.referencesBuonocore, M. y Maddock, R. (2015). Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Reviews in the Neurosciences, 26(6):609-632.eng
dcterms.referencesBuxton, R.B. (2002). Introduction to Functional Magnetic Resonance Imaging: Principles & Techniques. Cambridge, UK: Cambridge University Press.eng
dcterms.referencesCallaghan, P.T. (1993). Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford.eng
dcterms.referencesCarlsson, S.K., Brothers, S.P. y Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med, 6(11), 1359-1370.eng
dcterms.referencesCastellano, A., Cirillo, S., Bello, L., Riva, M. y Falini, A. (2017). Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol, 19(10), 34.eng
dcterms.referencesCha, S., Lupo, J.M., Chen, M.H., Lamborn, K.R., McDermott, M.W., Berger, M.S., Nelson, S.J. y Dillon, W.P. (2007). Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging. AJNR Am J Neuroradiol, 28(6):1078-1084.eng
dcterms.referencesChiang, I.C., Kuo, Y.T., Lu, C.Y., Yeung, K.W., Lin, W.C., Sheu, F.O. y Liu, G.C. (2004). Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings, Neuroradiology, 46(8):619-627.eng
dcterms.referencesDepartamento Administrativo Nacional de Estadística. (2016). Estimaciones 1985-2005 y Proyecciones 2005- 2020 nacional y departamental desagregadas por sexo, área y grupos quinquenales de edad [Documento en línea]. Disponible en: https://www.dane. gov.co/files/investigaciones/poblacion/proyepobla06_20/ 7Proyecciones_ poblacion.pdfspa
dcterms.referencesGerstner, E.R. y Sorensen, A.G. (2011). Diffusion and diffusion tensor imaging in brain cancer. Semin Radiat Oncol, 21(2):141-146.eng
dcterms.referencesGhinda, D.C. (2018). How much is enough—Can resting state fMRI provide a demarcation for neurosurgical resection in glioma? Neurosci Biobehav Rev, 84, 245-261.eng
dcterms.referencesGrisold, W. y Soffietti, R. (2012). Handbook of Clinical Neurology: Neuro-oncology, Part II, Editor Newnes.eng
dcterms.referencesHaacke, E.M., Brown, R.W., Thompson, M.R. y Venkatesan, R. (1999). Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons.eng
dcterms.referencesHennig, J., Speck, O., Koch, M.A., y Weiller, C. (2003). Functional magnetic resonance imaging: A review of methodological aspects and clinical applications. J Magn Reson Imaging, 18(1):1-15.eng
dcterms.referencesHuisman, T.A. (2003). Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma, Eur Radiol, 13(10), 2283-2297.eng
dcterms.referencesHuisman, T.A. (2010). Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging, 10(1A), S163-171.eng
dcterms.referencesInstituto Nacional de Cancerología. (2017). Atlas de Mortalidad por Cáncer. [Documento en línea] Disponible: https:// www.cancer.gov. co/ATLAS_de_Mortalidad_por_cancer_en_Colombia.pdfspa
dcterms.referencesJellinger, K. (1978). Glioblastoma multiforme: Morphology and biology, Acta Neurochir (Wien), 42(1-2), 5-32.eng
dcterms.referencesKilliany, R.J. (2010). Are white matter signal abnormalities clinically relevant? Neurology, 74(13), 1014-1015.eng
dcterms.referencesKosteniuk, S.E., Lau, J.C. y Megyesi, J.F. (2016). Clinical fMRI in low grade glioma patients: impact on surgical decision making and patient outcomes. Neuro Oncol, 18(4), 62.eng
dcterms.referencesLapointe. S., Perry, A. y Butowski, N.A. (2018). Primary brain tumours in adults, The Lancet. 392(10145):432-446.eng
dcterms.referencesLara-Velazquez, M., Al-Kharboosh, R., Jeanneret, S., Vazquez-Ramos, C., Mahato, D., Tavanaiepour, D., Rahmathulla, G., Quinones- Hinojosa, A. (2017). Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain sciences, 7(12), 166.eng
dcterms.referencesLarjavaara, S., Mäntylä, R., Salminen, T., Haapasalo, H., Raitanen, J., Jääskeläinen, J., y Auvinen, A. (2007). Incidence of gliomas by anatomic location. Neuro Oncol, 9(3), 319-25.eng
dcterms.referencesLasocki, A., Gaillard, F., Tacey, M., Drummond, K. y Stuckey, S. (2016). Multifocal and multicentric glioblastoma: Improved characterisation with FLAIR imaging and prognostic implications, J Clin Neurosci, 31:92-98.eng
dcterms.referencesLauterbur, P.C. (1973). Image formation by induced local interactions: examples employing nuclear. magnetic resonance. Nature 242:190-191.eng
dcterms.referencesLee, W.J., Choi, S.H., Park, C.K., Yi, K.S., Kim, T.M., Lee, S.H., Kim, J.H., Sohn, C.H., Park, S.H. y Kim, I.H. (2012). Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol, 19(11), 1353-1361.eng
dcterms.referencesLevitt, M. (2001). Spin dynamics: basics of nuclear magnetic resonance. New York: John Wiley & Sons.eng
dcterms.referencesLiebelt, B.D., Boghani, Z., Takei, H., Fung, S.H. y Britz, G.W. (2015). Epithelioid glioblastoma presenting as massive intracerebral hemorrhage: Case report and review of the literature. Surg Neurol Int, 6(Suppl 2): S97-S100.eng
dcterms.referencesLogothetis, N.K. y Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imaging, 22(10):1517-1531.eng
dcterms.referencesLouis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella- Branger, D., Cavenee, W.K., Ohgaki, H. Wiestler, O.D., Kleihues, P. y Ellison, DW. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 131(6), 803-820.eng
dcterms.referencesMansfield, P. y Grannell, P.K. (1973). NMR diffraction in solids. J. Phys C: Solid State Phys, 6(22), L422-L427.eng
dcterms.referencesMilchenko, M.V., Rajderkar, D., LaMontagne, P., Massoumzadeh, P., Bogdasarian, R., Schweitzer, G., Benzinger, T., Marcus, D., Shimony, J.S. y Fouke, S.J. (2014). Comparison of perfusion- and diffusion- weighted imaging parameters in brain tumor studies processed using different software platforms. Acad Radiol, 21(10), 1294-303.eng
dcterms.referencesMiranda-Filho, A., Piñeros, M., Soerjomataram, I., Deltour, I., y Bray, F. (2016). Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol, 19(2):270-280.eng
dcterms.referencesMorris, P.G. (1986). NMR Imaging in Medicine and Biology. Oxford University Press, Oxford.eng
dcterms.referencesNational Cancer Institute. (2018). Karnofsky Performance Status, [Documento en línea]. Disponible en: https://www.cancer.gov/publications/ dictionaries/cancer-terms/def/karnofsky-performance-status, Consulta: 2018, Noviembre 19.spa
dcterms.referencesNelson, S.J. y Cha, S. (2003). Imaging Glioblastoma Multiforme, Cancer J, 9(2):134-145.eng
dcterms.referencesNICE. Brain tumours (primary) and brain metastases in adults. 2018. Disponible: www.nice.org.uk/guidance/ng99. Consulta: 2019, junio 19.eng
dcterms.referencesOhgaki, H. y Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta Neuropathol, 109(1): 93-108.eng
dcterms.referencesOmuro, A. y DeAngelis, L.M. (2013). Glioblastoma and Other Malignant Gliomas A Clinical Review. JAMA, 310(17), 1842-1850.eng
dcterms.referencesOzdemir-Kaynak, E., Qutub, A.A. y Yesil-Celiktas, O. (2018). Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front Physiol, 9, 170.eng
dcterms.referencesPierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., y Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201(3), 637-48.eng
dcterms.referencesPiñeros, M, Sierra, M.S., Izarzugaza, M.I. y Forman, D. (2016). Descriptive epidemiology of brain and central nervous system cancers in Central and South America. Cancer Epidemiol, 44(Supp1), S141- S149.eng
dcterms.referencesPlewes, D.B. y Kucharczyk, W. (2012). Physics of MRI: A primer. J Magn Reson Imaging, 35(5), 1038-1054.eng
dcterms.referencesRahman, A.U. (1986). Nuclear magnetic resonance: basic principles. New York: Springer.eng
dcterms.referencesSalama, G.R., Heier, L.A., Patel, P., Ramakrishna, R., Magge, R., y Tsiouris, A.J. (2018). Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future. Front Neurol, 8, 660.eng
dcterms.referencesSimpson, J.R., Horton, J., Scott, C., Curran, W.J., Rubin, P., Fischbach, J., Isaacson, S., Rotman, M., Asbell, S.O., Nelson, J.S., Weinstein, A.S. y Nelson, D.F. (1993). Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: Results of three consecutive radiation therapy oncology group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys, 26(2), 239-244.eng
dcterms.referencesSwanson, L. (2014). Neuroanatomical Terminology: A Lexicon of Classical Origins and Historical Foundations, Oxford University Press.eng
dcterms.referencesVo-Dinh, T. (2003). Biomedical Photonics Handbook, CRC Press.eng
dcterms.referencesWang, W., Steward, C.E. y Desmond, P.M. (2009). Diffusion Tensor Imaging in Glioblastoma Multiforme and Brain Metastases: The Role of p, q, L, and Fractional Anisotropy. AJNR Am J Neuroradiol, 30(1), 203-208.eng
dcterms.referencesWright, G. A. (1997). Magnetic resonance imaging. IEEE Signal Processing Magazine, 2(1), 56–66.eng
dcterms.referencesZülgh, K.J. (1969). Biology and Morphology of Glioblastoma Multiforme. Acta Radiologica: Therapy, Physics, Biology, 8(1-2), 65-77.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
oaire.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1351]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional