Mostrar el registro sencillo del ítem

dc.contributor.authorVera, Miguel
dc.contributor.authorHuérfano, Yoleidy
dc.contributor.authorValbuena, Oscar
dc.contributor.authorHoyos, Diego
dc.contributor.authorArias, Yeni
dc.contributor.authorContreras, Yudith
dc.contributor.authorSalazar, Williams
dc.contributor.authorVera, María Isabel
dc.contributor.authorBorrero, Maryury
dc.contributor.authorVivas, Marisela
dc.contributor.authorHernández, Carlos
dc.contributor.authorBarrera, Doris
dc.contributor.authorMolina, Ángel Valentín
dc.contributor.authorMartínez, Luis Javier
dc.contributor.authorSalazar, Juan
dc.contributor.authorGelvez, Elkin
dc.date.accessioned2019-01-25T14:52:01Z
dc.date.available2019-01-25T14:52:01Z
dc.date.issued2018
dc.identifier.issn26107988
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2524
dc.description.abstractWe propose an intelligent computational technique for the image segmentation of a type IV brain tumor, identified as multiform glioblastoma (MGB), which is present in multi-layer computed tomography images. This technique consists of 3 stages developed in the three-dimensional domain. They are: pre-processing, segmentation and validation. During the validation stage, the Dice coefficient (Dc) is considered in order to compare the segmentations of the MGB, obtained automatically, with the segmentations of the MGB generated manually, by a neuro-oncologist. The combination of parameters linked to the highest Dc, allows to establish the optimal parameters of each of the computational algorithms that make up the proposed nonlinear technique. The obtained results allow to report a Dc higher than 0.88, validating a good correlation between the manual segmentations and those produced by the computational technique developed.eng
dc.description.abstractProponemos una técnica computacional inteligente para la segmentación de imágenes de un tumor cerebral tipo IV, identificado como glioblastoma multiforme (MGB), que está presente en imágenes de tomografía computarizada de múltiples capas. Esta técnica consiste en 3 etapas desarrolladas en el dominio tridimensional. Ellos son: preprocesamiento, segmentación y validación. Durante la etapa de validación, se considera el coeficiente de dados (Dc) para comparar las segmentaciones del MGB, obtenidas automáticamente, con las segmentaciones del MGB generado manualmente, por un neurooncólogo. La combinación de parámetros vinculados a la mayor Dc permite establecer los parámetros óptimos de cada uno de los algoritmos computacionales que conforman la técnica no lineal propuesta. Los resultados obtenidos permiten informar una Dc superior a 0,88, validando una buena correlación entre las segmentaciones manuales y las producidas por la técnica computacional desarrollada.spa
dc.language.isoengeng
dc.publisherSociedad Venezolana de Farmacología Clínica y Terapéuticaspa
dc.sourceRevista AVFT-Archivos Venezolanos de Farmacología y Terapéuticaspa
dc.sourceVol. 37, No. 4 (2018)spa
dc.source.urihttp://www.revistaavft.com/images/revistas/2018/avft_4_2018/5_automatic_segmentation_of_a_cerebral.pdfeng
dc.subjectBrain Tomographyeng
dc.subjectCerebral Tumoreng
dc.subjectGlioblastomaeng
dc.subjectIntelligent Computational Techniqueeng
dc.subjectSegmentationeng
dc.subjectTomografía cerebralspa
dc.subjectTumor cerebralspa
dc.subjectGlioblastomaspa
dc.subjectTécnica computacional inteligentespa
dc.subjectSegmentaciónspa
dc.titleAutomatic segmentation of a cerebral glioblastoma using a smart computational techniqueeng
dc.title.alternativeSegmentación automática de glioblastoma cerebral usando una técnica computacional inteligentespa
dc.typearticleeng
dcterms.referencesStelzer K. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013;4(Suppl 4):S192-202.eng
dcterms.referencesMcneill KA. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981-998.eng
dcterms.referencesAmerican Brain Tumor Association (ABTA). About Brain Tumors: A Primer for Patients and Caregivers. 9ª Edition. 2015 ABTA.eng
dcterms.referencesWHO (2007). Cavenee W, Louis D, Ohgaki H et al. Eds. WHO Classification of Tumours of the Central Nervous System. WHO Regional Office Europe.eng
dcterms.referencesOstrom Q., Gittleman H., Xi J., Kromer C., Wolinsky Y., Krinchko C., Barnholtz J., CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2009- 2013, Neuro Oncol (2016) 18 (suppl 5) v1-v75.eng
dcterms.referencesVera M. Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multi-corte. Ph.D. dissertation, Universidad de los Andes, Mérida-Venezuela, 2014.spa
dcterms.referencesMaiera A, Wigstrm L, Hofmann H, Hornegger J, Zhu L, Strobel N, Fahrig R. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT. Medical Physics. 2011;38(11):5896–909.eng
dcterms.referencesKroft L, De Roos A, Geleijns J. Artifacts in ECG– synchronized MDCT coronary angiography. American Journal of Roentgenology. 2007;189(3):581–91.eng
dcterms.referencesCasamitjana A., Puch S., Aduriz A., Vilaplana V. (2017). 3D Convolutional Neural Networks for Brain Tumor Segmentation: a comparison of multi-resolution architectures. arXiv:1705.08236v1.eng
dcterms.referencesZhang, J., Shen, X., Zhuo, T., & Zhou, H. (2017). Brain Tumor Segmentation Based on Refined Fully Convolutional Neural Networks with A Hierarchical Dice Loss. arXiv preprint arXiv:1712.09093eng
dcterms.referencesKleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., & Hamprecht, F. (2014). Ilastik for multi-modal brain tumor segmentation. Proceedings MICCAI BraTS (Brain Tumor Segmentation Challenge), 12-17.eng
dcterms.referencesSerra J. Image Analysis Using Mathematical Morphology. London, England: Academic Press, 1982.eng
dcterms.referencesW. Pratt, Digital Image Processing. USA: John Wiley & Sons Inc, 2007.eng
dcterms.referencesMukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement. Signal Processing, vol. 80, no. 4, pp. 685–696, 2000.eng
dcterms.referencesYu Z., Wei G., Zhen C., Jing T., Ling L. Medical images edge detection based on mathematical morphology. En Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai–China, September 2005, pp. 6492–6495.eng
dcterms.referencesSezgin M., Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, vol. 13, pp. 146–165, 2004.eng
dcterms.referencesMeijering H. Image en enhancement in digital X ray angiography. Tesis de Doctorado, Utrecht University, Netherlands, 2000.eng
dcterms.referencesV. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, 1998.eng
dcterms.referencesE. Osuna, R. Freund, y F. Girosi, “Training support vector machines: an application to face detection.” en Conference on Computer Vision and Pattern Recognition (CVPR ’97), San Juan, Puerto Rico, 1997, pp. 130–136.eng
dcterms.referencesA. Smola, “Learning with kernels,” Tesis de Doctorado,Technische Universitt Berlin, Germany, 1998.eng
dcterms.referencesB. Scholkopf y A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA , USA: The MIT Press, 2002.eng
dcterms.referencesJ. Suykens, T. V. Gestel, y J. D. Brabanter, Least Squares Support Vector Machines.UK: World Scientific Publishing Co., 2002.eng
dcterms.referencesM. Oren, C. Papageorgiou, P. Sinha, E. Osuna, y T. Poggio, “Pedestrian detection using wavelet templates,” en CVPR ’97: Conference on Computer Vision and Pattern Recognition (CVPR ’97). Washington, DC, USA: IEEE Computer Society, 1997, pp. 193–200.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem