Mostrar el registro sencillo del ítem

dc.rights.licenselicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorGunawardene, Piumali
dc.contributor.authorAl Saedi, Ahmed
dc.contributor.authorSingh, Lakshman
dc.contributor.authorBermeo, Sandra
dc.contributor.authorVogrin, Sara
dc.contributor.authorPhu, Steven
dc.contributor.authorSuriyaarachchi, Pushpa
dc.contributor.authorPignolo, Robert J.
dc.contributor.authorDuque, Gustavo
dc.date.accessioned2018-04-02T21:04:00Z
dc.date.available2018-04-02T21:04:00Z
dc.date.issued2017-06
dc.identifier.issn05315565
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1933
dc.description.abstractCirculating osteoprogenitor (COP) cells are blood-borne cellswhich express a variety of osteoblasticmarkers and are able to formbone nodules in vivo.Whereas a high percentage of COP cells (%COP) is associatedwith vascular calcification, low %COP has been associated with disability and frailty. However, the reference range of %COP in age- and gender-matching populations, and the age-related changes in %COP remain unknown. A cross-sectional studywas undertaken in 144 healthy volunteers inWestern Sydney (20–90 year-old, 10male and 10 female subjects per decade). %COP was quantified by flow cytometry. A high inter-and intra-rater reliability was found. In average, in this healthy population average of %COP was 0.42. There was no significant difference in %COP among the age groups. Similarly, no significant difference was found in %COP with gender, weight, height or BMI. In addition, we identified a normal reference range of %COP of 0.1–3.8%. In conclusion, in addition to the identification of steady levels of COP cells with age, we also identified a normal reference range of %COP, which could be used in future studies looking at musculoskeletal diseases in older populations.eng
dc.language.isoengeng
dc.publisherElseviereng
dc.sourceExperimental Gerontologyspa
dc.sourceVol. 96 (2017)spa
dc.source.urihttps://doi.org/10.1016/j.exger.2017.06.004spa
dc.subjectOsteosarcopeniaeng
dc.subjectStem cellseng
dc.subjectMusculoskeletaleng
dc.subjectCirculating osteoprogenitorseng
dc.titleAge, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Studyeng
dc.typearticleeng
dcterms.referencesAlmeida, M., 2012. Aging mechanisms in bone. BoneKEy Rep. 1.eng
dcterms.referencesBeane, O.S., Fonseca, V.C., Cooper, L.L., Koren, G., Darling, E.M., 2014. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 9, e115963eng
dcterms.referencesBenisch, P., Schilling, T., Klein-Hitpass, L., Frey, S.P., Seefried, L., Raaijmakers, N., et al., 2012. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 7, e45142.eng
dcterms.referencesCharlson, M.E., Pompei, P., Ales, K.L., MacKenzie, C.R., 1987. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383.eng
dcterms.referencesCherian, S., Moore, J., Bantly, A., et al., 2005. Peripheral blood MDS score: a new flow cytometric tool for the diagnosis of myelodysplastic syndromes. Cytometry B Clin. Cytom. 64, 9.eng
dcterms.referencesDemontiero, O., Boersma, D., Suriyaarachchi, P., Duque, G., 2014. Clinical outcomes of impaired muscle and bone interactions. Clin. Rev. Bone Miner. Metab. 12, 86–92.eng
dcterms.referencesEgan, K.P., Kim, J.H., Mohler 3rd, E.R., Pignolo, R.J., 2011. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler. Thromb. Vasc. Biol. 31, 2965–2971.eng
dcterms.referencesEghbali-Fatourechi, G.Z., Lamsam, J., Fraser, D., Nagel, D., Riggs, B.L., Khosla, S., 2005. Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. 352, 1959–1966.eng
dcterms.referencesGrounds, M.D., 2014. Therapies for sarcopenia and regeneration of old skeletal muscles: more a case of old tissue architecture than old stem cells. BioArchitecture 4, 81–87eng
dcterms.referencesGunawardene, P., Bermeo, S., Vidal, C., Al-Saedi, A., Chung, P., Boersma, D., et al., 2016. Association between circulating osteogenic progenitor cells and disability and frailty in older persons: the Nepean osteoporosis and frailty study. J. Gerontol. A Biol. Sci.Med. Sci. 71, 1124–1130.eng
dcterms.referencesIshihara, A., Bertone, A.L., 2012. Cell-mediated and direct gene therapy for bone regeneration. Expert. Opin. Biol. Ther. 12, 411–423.eng
dcterms.referencesJiang, S.S., Chen, C.H., Tseng, K.Y., Tsai, F.Y., Wang, M.J., Chang, I.S., et al., 2011. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging 3, 672–684.eng
dcterms.referencesMagni, P., Dozio, E., Galliera, E., Ruscica, M., Corsi, M.M., 2010. Molecular aspects of adipokine–bone interactions. Curr. Mol. Med. 10, 522–532.eng
dcterms.referencesPignolo, R.J., Kassem, M., 2011. Circulating osteogenic cells: implications for injury, repair, and regeneration. J. Bone Miner. Res. 26, 1685–1693.eng
dcterms.referencesPirro,M., Leli, C., Fabbriciani, G.,Manfredelli, M.R., Callarelli, L., Bagaglia, F., et al., 2010. Association between circulating osteoprogenitor cell numbers and bone mineral density in postmenopausal osteoporosis. Osteoporos. Int. 21, 297–306.eng
dcterms.referencesSethe, S., Scutt, A., Stolzing, A., 2006. Aging ofmesenchymal stem cells. Ageing Res. Rev. 5, 91–116.eng
dcterms.referencesStolzing, A., Jones, E., McGonagle, D., Scutt, A., 2008. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev. 129, 163–173.eng
dcterms.referencesSuda, R.K., Billings, P.C., Egan, K.P., Kim, J.H., McCarrick-Walmsley, R., Glaser, D.L., et al., 2009. Circulating osteogenic precursor cells in heterotopic bone formation. Stem Cells 27, 2209–2219.eng
dcterms.referencesTong, J., Li,W., Vidal, C., Yeo, L.S., Fatkin, D., Duque, G., 2011. Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech. Ageing Dev. 132, 552–559.eng
dcterms.referencesToupadakis, C.A., Granick, J.L., Sagy,M.,Wong, A., Ghassemi, E., Chung, D.J., Borjesson, D.L., Yellowley, C.E., 2013. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model. Cytotherapy 15, 1136–1147.eng
dcterms.referencesUrbich, C., Dimmeler, S., 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95, 343–353.eng
dcterms.referencesZhou, S., Greenberger, J.S., Epperly, M.W., Goff, J.P., Adler, C., Leboff, M.S., Glowacki, J., 2008. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7, 335–343.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1351]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem